Những câu hỏi liên quan
WC
Xem chi tiết
NT
18 tháng 5 2016 lúc 18:25

Không nhất thiết phải sử dụng phép đồng dư.

Nhận xét: với tích của mọi số có tận cùng là 6 ta đều có chữ số tận cùng là 6 tức là 6n luôn tận cùng là 6

Vậy 62009 tận cùng là 6

Bình luận (0)
KS
18 tháng 5 2016 lúc 19:13

\(6^{2009}=6^{2008}.6=.......6.6=.......6\)

Suy ra chữ số tận cùng của \(6^{2009}\)=6

Bình luận (0)
ND
Xem chi tiết
MC
2 tháng 9 2018 lúc 18:38

Ta có:

\(2^{2012}=\left(2^4\right)^{503}=16^{503}\)

Ta có:

\(16^5\equiv576\left(mod1000\right)\)

\(\Rightarrow\left(16^5\right)^2\equiv576^2\equiv776\left(mod1000\right)\)

\(\Rightarrow\left(16^{10}\right)^2\equiv776^2\equiv176\left(mod1000\right)\)

\(\Rightarrow\left(16^{20}\right)^4\equiv176^4\equiv576\left(mod1000\right)\)

\(\Rightarrow\left(16^{80}\right)^3\equiv576^3\equiv976\left(mod1000\right)\)

\(\Rightarrow\left(16^{240}\right)^2\equiv976^2\equiv576\left(mod1000\right)\)

\(\Rightarrow16^{480}\equiv576\left(mod1000\right)\)     (1)

Ta có \(16^{20}\equiv576\left(mod1000\right)\)

\(\Rightarrow16^{23}\equiv576.16^3\equiv296\left(mod1000\right)\) (2)

Từ (1),(2)

\(\Rightarrow16^{503}\equiv296.576\equiv496\left(mod1000\right)\)

\(\Rightarrow2^{2012}\equiv496\left(mod1000\right)\)

vậy 3 chữ số tận cùng của 2^2012 là 496

Bình luận (0)
ND
Xem chi tiết
H24
31 tháng 12 2015 lúc 16:07

ko bit , do dien , ro 

Bình luận (0)
DX
Xem chi tiết
LH
Xem chi tiết
NT
18 tháng 8 2020 lúc 16:11

A=6^2005=(6^2004).6=(.....36).6=(.....16)

Bình luận (0)
 Khách vãng lai đã xóa
NH
18 tháng 8 2020 lúc 16:12

Em chưa học đồng dư nhưng chắc cũng làm giống bài trong link này . Anh xem thử ạ : https://h.vn/hoi-dap/question/386876.html

Bình luận (0)
 Khách vãng lai đã xóa
TQ
18 tháng 8 2020 lúc 16:26

mk ko dùng kiến thức đồng dư nha

Ta có:\(A=6^{2005}=\left(6^5\right)^{401}=\overline{...76}^{401}=\overline{...76}\)(Vì những số có 2 chữ số tận cùng là 76 thì những số này nâng lên lũy thừa (bao nhiêu (khác 0)  thì chúng vẫn có chữ số tận cùng là 76)

Vậy A có 2 chữ số tận cùng là 76

Bình luận (0)
 Khách vãng lai đã xóa
YS
Xem chi tiết
H24
2 tháng 9 2018 lúc 8:51

bạn ra đề khó quá

Bình luận (0)
GV
Xem chi tiết
PQ
Xem chi tiết
XO
12 tháng 9 2018 lúc 15:03

1                                                                                   Bài làm

Ta có :  2^1954 = 2 x 2 x 2 x 2 x ........ x 2 (1954 thừa số 2)

Ta có : 2 x 2 x 2 x 2 = tận cùng là 016 

Vì 1954 : 4 = 448 dư 2 

nên 2 x 2 x 2 x 2 x ...... x 2 (1954 thừa số 2) = 448 nhóm tận cùng là 016 và dư 2 thừa số 2

                                                                    = ..016 x .... 2 x ... 2 = ...064 

=> 3 chữ số tận cùng của tích trên là 064

Vậy 3 chữ số tận cùng của tích trên là 064

 

Bình luận (0)
HV
Xem chi tiết
KK
11 tháng 8 2020 lúc 9:27

Ta có: \(5^{2018}=\left(5^4\right)^{504}.5^2\)

\(5^4\equiv625\left(mod1000\right)\)

\(\Rightarrow\left(5^4\right)^{2018}\equiv625^{2018}\left(mod1000\right)\)

\(\Rightarrow\left(5^4\right)^{2018}\equiv625\left(mod1000\right)\)(vì \(625^{2018}\)có tận cùng là 0625)

\(\Rightarrow\left(5^4\right)^{2018}.5^2\equiv625.5^2\left(mod1000\right)\)

\(\Rightarrow5^{2018}\equiv5625\left(mod1000\right)\)

Vậy: \(5^{2018}\)có tận cùng là 5625

Bình luận (0)
 Khách vãng lai đã xóa