giúp em vs chứng minh
1/2x^2+2y^2+1/2z^2+2xy-xy-2yz lớn hơn hoặc bằng 0 với mọi x,y,z
Chứng minh rằng :
a) x^2+y^2+z^2 lớn hơn hoặc bằng xy+yz+zx
b) x^2+y^2+z^2 lớn hơn hoặc bằng 2xy-2xz+2yz
a/ a2 + b2 + c2 \(\ge\)ab + bc + ca
<=> 2(a2 + b2 + c2) \(\ge\)2(ab + bc + ca)
<=> (a2 - 2ab + b2) + (b2 - 2bc + c2) + (c2 - 2ca + a2 \(\ge0\)
<=> (a - b)2 + (b - c)2 + (c - a)2 \(\ge0\) (đúng)
=> ĐPCM
b/ a2 + b2 + c2 \(\ge\) 2ab - 2ac + 2bc
<=> a2 + b2 + c2 + 2( - ab + ac - bc)\(\ge\) 0
<=> (a - b + c)2 \(\ge0\)(đúng)
=> ĐPCM
x + y + z = 0. Tính ((xy + 2z^2)(yz + 2x^2)(xz + 2y^2))/((2xy^2 + 2yz^2 + 2zx^2 + 3xyz)^2)
vói mọi x,y,z chứng minh rằng
b) x^2 + y^2 + z^2 lớn hơn hoặc bằng 2xy - 2xz + 2yz
c) x^2 + y^2 + z^2 +3 lớn hơn hoặc bằng 2 ( x+y +z )
--Giúp mình nhé ! cảm ơn nhiều ;) :*
Câu hỏi của thanh ngọc - Toán lớp 9 | Học trực tuyến
4x^2+2y^2+2z^2-4xy-2yz+2y-8z+10 bé hơn hoặc bằng 0. Tìm x,y,z
4x^2+2y^2+2z^2-4xy-2yz+2y-8z+10 bé hơn hoặc bằng 0. Tìm x,y,z
a) \(\left(x+y\right)^2\ge0\Leftrightarrow x^2+y^2\ge-2xy\Leftrightarrow2\left(x^2+y^2\right)\ge x^2+y^2-2xy\)
\(\Leftrightarrow\frac{x^2+y^2}{2}\ge\frac{\left(x-y\right)^2}{4}\)
Dấu \(=\)khi \(x+y=0\Leftrightarrow x=-y\).
b) \(\frac{x^2+y^2+z^2}{4}\ge2\left(xy+yz+zx\right)\)
Câu này có lẽ bạn sai đề rồi nhé.
Chứng minh rằng A lớn hơn hoặc bằng 0 vs mọi x,y khác 0
A=(75x^5 y^2-45x^4 y^3) : 3x^3 y^2-(5/2 xy^4-2xy^5) : 1/2xy^3