Những câu hỏi liên quan
HM
Xem chi tiết
AH
10 tháng 2 2017 lúc 0:58

Câu 1)

Thử \(x=1,2,3,4,5\) ta thấy chỉ \(x=1\) thỏa mãn \(y=1\)

Với \(x\geq 6\)

Để ý rằng \(1!+2!+3!+...+x!=3+3!+4!+...+x!\) luôn chia hết cho $3$. Do đó \(y^3\vdots 3\rightarrow y\vdots 3\rightarrow y^3\vdots 27\)

Với \(x\geq 6\) thì \(x!\) luôn chia hết cho $27$. Do đó để \(y^3\vdots 27\) thì \(1!+2!+...+5!\) cũng phải chia hết cho $27$ hay $153$ chia hết cho $27$. Điều này vô lý.

Do đó phương trình chỉ có bộ nghiệm \((x,y)=(1,1)\) thỏa mãn.

Bình luận (0)
AH
10 tháng 2 2017 lúc 1:48

Bài 2)

Ta thấy \(3(x^2+y^2+xy)=x+8y\geq 0\) nên chắc chắn tồn tại ít nhất một số nguyên không âm.

TH1: \(x\geq 0\)

\(\text{PT}\Leftrightarrow 3y^2+y(3x-8)+3x^2-x=0\)

Để PT có nghiệm thì \(\Delta=(3x-8)^2-12(3x^2-x)\geq 0\)

\(\Leftrightarrow -27x^2-36x+64\geq 0\)

Giải HPT trên ta suy ra \(x\leq 1\). Do đó \(x=0\) hoặc $1$

Nếu \(x=0\Rightarrow y=0\)

Nếu \(x=1\rightarrow y=1\)

TH2: \(x<0\) thì \(y> 0\)

\(\text{PT}\Leftrightarrow 3x^2+x(3y-1)+3y^2-8y=0\)

Để PT có nghiệm thì \(\Delta =(3y-1)^2-12(3y^2-8y)\geq 0\)

\(\Leftrightarrow -27y^2+90y+1\geq 0\rightarrow y\leq 3\rightarrow y=1,2,3\)

Nếu \(y=1\rightarrow x=1\)

Nếu \(y=2,3\) không có $x$ thỏa mãn.

Vậy \((x,y)=(0,0),(1,1)\)

Bình luận (0)
HM
Xem chi tiết
AN
27 tháng 11 2016 lúc 4:44

Với có ít nhất x,y = 1 thì VT > VP

Với x > 1, y > 1 thì

\(\frac{1}{x^2}+\frac{1}{xy}+\frac{1}{y^2}\le\frac{1}{4}+\frac{1}{4}+\frac{1}{4}< 1\)

Hay VT < 1

Vậy PT không có nghiệm nguyên dương

Bình luận (0)
CK
Xem chi tiết
NB
2 tháng 10 2016 lúc 21:02

Bài này bạn nhân bung ra rồi gom lại là đc

Bình luận (0)
PA
Xem chi tiết
IS
19 tháng 3 2020 lúc 22:09

ta có \(5\left(x^2+xy+y^2\right)=7\left(x+2y\right)\)

zì 5 , 7 là 2 số nguyên tố cùng nhau . Nên

\(\hept{\begin{cases}x+2y=5m\\x^2+xy+y^2=7m\end{cases}m\inℤ}\)

từ \(x+2y=5m=>5m-2y=x.\)thay zô \(x^2+xy+y^2=7m\)zà rút gọn ta được

\(\left(5m-2y\right)^2+\left(5m-2y\right)y+y^2=7m\Leftrightarrow3y^2-15my+25m^2-7m=0\left(1\right)\)

=>\(3\left(y^2-5my\right)+25m^2-7m=0=>3\left(y-\frac{5m}{2}\right)^2-\frac{75m^2}{4}=7m-25m^2\)

=>\(3\left(y-\frac{5m}{2}\right)^2=\frac{1}{4}\left(-25m^2+28m\right)\)

zì \(3\left(y-\frac{5m}{2}\right)^2\ge0\forall m,y\)

=>\(\frac{1}{4}\left(-25m^2+28m\right)\ge0\Leftrightarrow25m^2-28m\le0\Leftrightarrow m\left(m-\frac{28}{25}\right)\le0\Leftrightarrow0\le m\le\frac{28}{25}\)

mà \(m\inℤ\)nên \(m\in\left\{0,1\right\}\)

zới m=0 thay zô (1) ta được y=0. từ đó tính đc x=0

zới m =1 thây zô (1) ta được \(3y^2-15y+18=0=>y^2-5y+6=0=>\orbr{\begin{cases}y=2\\y=3\end{cases}}\)

zới y=2 , m=1 thì ta tính đc x=1

zới y=3 , m=1 thì ta tính đc x=-1

zậy \(\left(x,y\right)\in\left\{\left(0,0\right);\left(1,2\right)\left(-1,3\right)\right\}\)

Bình luận (0)
 Khách vãng lai đã xóa
TD
Xem chi tiết
TD
Xem chi tiết
PS
Xem chi tiết
H24
Xem chi tiết
H24
17 tháng 7 2017 lúc 9:53

bài 1

coi bậc 2 với ẩn x tham số y D(x) phải chính phường

<=> (2y-3)^2 -4(2y^2 -3y+2) =k^2

=> -8y^2 +1 =k^2 => y =0

với y =0 => x =-1 và -2

Bình luận (0)
H24
17 tháng 7 2017 lúc 8:09

1)

f(x) =x^2 -(2y -3)x +2y^2 -3y+2 =0
cần x nguyên
<=> (2y-3)^2 -4(2y^2 -3y+2) =k^2
<=> 4y^2 -12y +9 -8y^2 +12y -8 =k^2
<=> -4y^2 +1 =k^2
<=> k^2 +4y^2 =1
=> y=0
với y =0 => x =-1 ; x =-2
kết luận
(x,y) =(-1;0) ; (-2;0)

2)

<=> y(xy^2 +y+4x) =6
xét g(y) =xy^2 +y+4x phải nguyên
=> $\Delta$ (y) =1 -16x^2 =k^2
k^2 +16x^2 =1
x nguyên => x =0 duy nhất
với x = 0
f(y) = y^2 =6 => vô nghiệm nguyên

Bình luận (0)
H24
17 tháng 7 2017 lúc 9:47

<=> y(xy^2 +y+4x) =16
hệ nghiệm nguyên
y ={-16, -8,-4,-2,-1 ,1 ,2 ,4,8,16} (1)
xy^2 +y+4x ={-1,-2,-4,-8,-16,16,8,4,2, 1} (2)

từ (2) <=>xy^2 +y+4x =a
với a ={-1,-2,-4,-8,-16,16,8,4,2,1} tương ứng y ={-16, -8,-4,-2,-1 ,1 ,2 ,4,8,16}

x =`$\frac{a-y}{y^2 +4}$`
a-y = { 15 , 6, 0, -6,-15,15, 6, 0, -6,-15 }
y^2 +4 = { 260,68, 20, 8, 5, 5, 8,20, 68,260 }

a-y=0 hoặc cần |a-y| >= y^2 +4
=> có các giá tri x nguyên
x ={0, -3,3,0}
y ={-4,-1,1,4}
kết luận nghiệm
(x,y) =(0,-4) ; (-3;-1) ;(3;1); (0;4)

Bình luận (0)
KG
Xem chi tiết
LP
29 tháng 8 2023 lúc 13:49

Ta có \(VP=y\left(y+3\right)\left(y+1\right)\left(y+2\right)\)

\(VP=\left(y^2+3y\right)\left(y^2+3y+2\right)\)

\(VP=\left(y^2+3y+1\right)^2-1\)

\(VP=t^2-1\) (với \(t=y^2+3y+1\ge0\))

pt đã cho trở thành:

\(x^2=t^2-1\)

\(\Leftrightarrow t^2-x^2=1\)

\(\Leftrightarrow\left(t-x\right)\left(t+x\right)=1\)

Ta xét các TH:

\(t-x\) 1 -1
\(t+x\) 1 -1
\(t\) 1 -1
\(x\) 0

0

Xét TH \(\left(t,x\right)=\left(1,0\right)\) thì \(y^2+3y+1=1\) \(\Leftrightarrow\left[{}\begin{matrix}y=0\\y=-3\end{matrix}\right.\) (thử lại thỏa)

Xét TH \(\left(t,x\right)=\left(-1;0\right)\) thì \(y^2+3y+1=-1\Leftrightarrow\left[{}\begin{matrix}y=-1\\y=-2\end{matrix}\right.\) (thử lại thỏa).

 Vậy các bộ số nguyên (x; y) thỏa mãn bài toán là \(\left(0;y\right)\) với \(y\in\left\{-1;-2;-3;-4\right\}\)

 

Bình luận (0)