Những câu hỏi liên quan
KH
Xem chi tiết
KH
11 tháng 1 2016 lúc 21:20

Cho ai biết cách làm ko ???

Bình luận (0)
DU
Xem chi tiết
H24
25 tháng 1 2017 lúc 16:37

Điện​thọi bé tý khi viết lời giải chẳng thẫy đề đâu. Vp (a+b)^3=bó tay

Bình luận (0)
DU
25 tháng 1 2017 lúc 15:35

=1 phải ko?

Bình luận (0)
ND
Xem chi tiết
LM
25 tháng 12 2019 lúc 15:28

dit me may

Bình luận (0)
 Khách vãng lai đã xóa
H24
Xem chi tiết
TU
21 tháng 7 2016 lúc 15:04

Hằng đẳng thức bậc cao

Bình luận (0)
KL
21 tháng 7 2016 lúc 15:06

a, \(\left(a+b+c\right)^2=a^2+b^2+c^2+2ab+2bc+2ac\)  Hệ thức bình phương tổng ba số

\(\left(a+b+c\right)^3=a^3+b^3+c^3+3\left(a+b\right)\left(b+c\right)\left(c+a\right)\) Hệ thức lập phương tổng ba số 

Bình luận (0)
KL
21 tháng 7 2016 lúc 15:08

b,c là hằng đẳng thức thuộc hệ thức Newton

Bình luận (0)
LB
Xem chi tiết
NT
Xem chi tiết
KN
25 tháng 4 2020 lúc 19:26

Áp dụng bất đẳng thức Cô - si cho 2 số không âm, ta có:

\(\frac{a^2+6a+3}{a^2+a}=\frac{\left(3a^2+3\right)+6a-2a^2}{a^2+a}\ge\frac{6a+6a-2a^2}{a^2+a}\)

\(=\frac{12a-2a^2}{a^2+a}=\frac{14}{a+1}-2\)

Tương tự ta có: \(\frac{b^2+6b+3}{b^2+b}\ge\frac{14}{b+1}-2\);\(\frac{c^2+6c+3}{c^2+c}\ge\frac{14}{c+1}-2\)

Cộng từng vế của 3 bất đẳng thức trên và sử dụng BĐT Bunhiacopxki dạng phân thức, ta được: 

\(A\ge14\left(\frac{1}{a+1}+\frac{1}{b+1}+\frac{1}{c+1}\right)-6\ge14.\frac{9}{a+b+c+3}-6\)

\(\ge14.\frac{9}{3+3}-6=15\)

Đẳng thức xảy ra khi a = b = c = 1

Bình luận (0)
 Khách vãng lai đã xóa
KN
7 tháng 6 2020 lúc 6:00

Cách 2, dùng UCT xét BĐT phụ

Xét BĐT phụ: \(\frac{x^2+6x+3}{x^2+x}\ge\frac{-7}{2}x+\frac{17}{2}\)(*)

Thật vậy: (*)\(\Leftrightarrow\frac{\left(7x+6\right)\left(x-1\right)^2}{2\left(x^2+x\right)}\ge0\)(Đúng với mọi x dương)

Áp dụng, ta được: \(A=\frac{a^2+6a+3}{a^2+a}+\frac{b^2+6b+3}{b^2+b}+\frac{c^2+6c+3}{c^2+c}\)\(\ge\frac{-7}{2}\left(a+b+c\right)+\frac{17}{2}.3=\ge\frac{-7}{2}.3+\frac{51}{2}=15\)

Đẳng thức xảy ra khi a = b = c = 1

Bình luận (0)
 Khách vãng lai đã xóa
HN
Xem chi tiết
TN
29 tháng 6 2016 lúc 22:13

\(a^3-a^2b+ab^2-6b^3=0\)

\(\Leftrightarrow\left(a-2b\right)\left(a^2+ab+3b^2\right)=0\left(1\right)\)

Vì a>b>0 =>a2+ab+3b2>0 nên từ (1) ta có a=2b

Vậy biểu thức \(A=\frac{a^4-4b^4}{b^4-4a^4}=\frac{16b^4-4b^4}{b^4-64b^4}=\frac{12b^4}{-63b^4}=-\frac{4}{21}\)

Bình luận (0)
TN
2 tháng 3 2021 lúc 18:58
Không làm mà đòi có ăn thì chỉ ăn cứt ăn đâù buồi
Bình luận (0)
 Khách vãng lai đã xóa
NT
2 tháng 3 2021 lúc 20:02

= 4/ 2 ko

Bình luận (0)
 Khách vãng lai đã xóa
LT
Xem chi tiết
NN
7 tháng 1 2024 lúc 14:26

A)Ta có: (3a + 4b) ⋮ 7 ⇒ 2 . (3a + 4b) ⋮ 7 ⇒ (6a + 8b) ⋮ 7 (1)

Ta lại có:

(6a + 8b) + (a + 6b)

=(6a + a) + (8b + 6b)

=7a + 14b

=7a + 7 . 2 . b

=7 . (a + 2b) ⋮ 7 (vì 7 ⋮ 7)

⇒(6a + 8b) + (a + 6b) ⋮ 7 mà (6a + 8b) ⋮ 7 (theo (1))

⇒(a + 6b) ⋮ 7 (ĐPCM)

Vậy...

Xin lỗi anh nhưng câu B) em không hiểu lắm ạ!

Bình luận (0)
NM
Xem chi tiết