Cho A=(6a^2-5a^2-10a^2).(-4b^3+6b^3). Tìm giá trị của a, b :
a) A>0
b) A<0
c) A=0
Cho A= (6a2 - 5a2 - 10a2 ) . ( -4b3 + 6b3). Tính giá trị của a, b để:
a) A>0
b) A<0
c) A》0
Các bạn giúp mình với. Nhanh lên nhé
Cho a3+4a2b=2b3-5ab2 và a khác b khác 0.
Giá trị \(P=\frac{5a^2-4b^2+2ab}{6a^2+2b^2-3ab^2}=?\)
Điệnthọi bé tý khi viết lời giải chẳng thẫy đề đâu. Vp (a+b)^3=bó tay
Cho hai số a,b thỏa mãn: 5a^2+4b^2+25=10a+8ab
Tính giá trị của biểu thức: P= a^2017.b^2018-a^2018.b^2017+28.12+2017a-2018b
Cho mình hỏi các hằng đẳng thức này có tên là gì vậy:
a, (a+b+c)^3 = a^2 + b^2 + c^2 + 2ab + 2bc + 2ca
b, (a+b)^4 = a^4 + 4a^3b + 6a^2b^2 + 4ab^3 + b^4
c, (a+b)^5 = a^5 + 5a^4b + 10a^3b^2 + 10a^2b^3 + 5ab^4 + b^5
a, \(\left(a+b+c\right)^2=a^2+b^2+c^2+2ab+2bc+2ac\) Hệ thức bình phương tổng ba số
\(\left(a+b+c\right)^3=a^3+b^3+c^3+3\left(a+b\right)\left(b+c\right)\left(c+a\right)\) Hệ thức lập phương tổng ba số
b,c là hằng đẳng thức thuộc hệ thức Newton
Cho 3 số dương a, b,c thỏa mãn: a+b+c\(\le\)3. Tìm giá trị nhỏ nhất của:
\(A=\frac{a^2+6a+3}{a^2+a}+\frac{b^2+6b+3}{b^2+b}+\frac{c^2+6c+3}{c^2+c}\)
Áp dụng bất đẳng thức Cô - si cho 2 số không âm, ta có:
\(\frac{a^2+6a+3}{a^2+a}=\frac{\left(3a^2+3\right)+6a-2a^2}{a^2+a}\ge\frac{6a+6a-2a^2}{a^2+a}\)
\(=\frac{12a-2a^2}{a^2+a}=\frac{14}{a+1}-2\)
Tương tự ta có: \(\frac{b^2+6b+3}{b^2+b}\ge\frac{14}{b+1}-2\);\(\frac{c^2+6c+3}{c^2+c}\ge\frac{14}{c+1}-2\)
Cộng từng vế của 3 bất đẳng thức trên và sử dụng BĐT Bunhiacopxki dạng phân thức, ta được:
\(A\ge14\left(\frac{1}{a+1}+\frac{1}{b+1}+\frac{1}{c+1}\right)-6\ge14.\frac{9}{a+b+c+3}-6\)
\(\ge14.\frac{9}{3+3}-6=15\)
Đẳng thức xảy ra khi a = b = c = 1
Cách 2, dùng UCT xét BĐT phụ
Xét BĐT phụ: \(\frac{x^2+6x+3}{x^2+x}\ge\frac{-7}{2}x+\frac{17}{2}\)(*)
Thật vậy: (*)\(\Leftrightarrow\frac{\left(7x+6\right)\left(x-1\right)^2}{2\left(x^2+x\right)}\ge0\)(Đúng với mọi x dương)
Áp dụng, ta được: \(A=\frac{a^2+6a+3}{a^2+a}+\frac{b^2+6b+3}{b^2+b}+\frac{c^2+6c+3}{c^2+c}\)\(\ge\frac{-7}{2}\left(a+b+c\right)+\frac{17}{2}.3=\ge\frac{-7}{2}.3+\frac{51}{2}=15\)
Đẳng thức xảy ra khi a = b = c = 1
Cho a và b là các số thỏa mãn: a>b>0 và a^3-a^2b+ab^2-6b^3=0
Tính giá trị biểu thức A=(a^4-4b^4)/(b^4-4a^4)
\(a^3-a^2b+ab^2-6b^3=0\)
\(\Leftrightarrow\left(a-2b\right)\left(a^2+ab+3b^2\right)=0\left(1\right)\)
Vì a>b>0 =>a2+ab+3b2>0 nên từ (1) ta có a=2b
Vậy biểu thức \(A=\frac{a^4-4b^4}{b^4-4a^4}=\frac{16b^4-4b^4}{b^4-64b^4}=\frac{12b^4}{-63b^4}=-\frac{4}{21}\)
cho a,b thuộc Z và 3a cộng 4b chia hết cho 7 CMR
A)a+6b chia hết cho 7
B)(a+6b)(2a+5b)(3a+4b)(4a+3b)(5a+2b)(6a+b)
làm ơn hãy giúp mình :(
A)Ta có: (3a + 4b) ⋮ 7 ⇒ 2 . (3a + 4b) ⋮ 7 ⇒ (6a + 8b) ⋮ 7 (1)
Ta lại có:
(6a + 8b) + (a + 6b)
=(6a + a) + (8b + 6b)
=7a + 14b
=7a + 7 . 2 . b
=7 . (a + 2b) ⋮ 7 (vì 7 ⋮ 7)
⇒(6a + 8b) + (a + 6b) ⋮ 7 mà (6a + 8b) ⋮ 7 (theo (1))
⇒(a + 6b) ⋮ 7 (ĐPCM)
Vậy...
Xin lỗi anh nhưng câu B) em không hiểu lắm ạ!
cho a,b là các số thỏa a>b>0 và \(a^3-a^2b+ab^2-6b^3\) Tính giá trị của \(A=\frac{a^4-4b^4}{b^4-4a^2}\)