cho (x - y) : (x+y) : xy =1 : 7 : 24 ( x,y khác 0) tính xy=...
ai hộ mk nhanh với
Cho (x - y) : (x + y) : xy = 1 : 7 : 24 (x, y khác 0). Tính xy
Ta có: x−y1=x+y7=(x−y)+(x+y)1+7=2x8=x4x−y1=x+y7=(x−y)+(x+y)1+7=2x8=x4
xy=xy24⇔6x24=xy24xy=xy24⇔6x24=xy24
⇒6x=xy⇒6x=xy
⇒y=6⇒y=6
x−61=x+67x−61=x+67
⇔7.(x−6)=x+6⇔7.(x−6)=x+6
⇔7x−42=x+6⇔7x−42=x+6
⇔7x−x=6+42⇔7x−x=6+42
⇔6x=48⇔6x=48
⇒x=8⇒x=8
Vậy x=8;y=6
cho (x-y)/(x+y)/xy=1/7/24 (x ; y khác 0 ) tính xy = ....................
Cho (x-y) : ( x+y) :xy = 1:7:24 với x,y khác 0.Hãy tính tích (x.y)
ko can tl dau, mk biet lam rui may bn ak . Dung tl nha
a)Cho x+y=1 và xy=-6
Tính x^2+y^2;x^3+y^3;x^5+y^5
b)Cho x-y=1 và xy=6
Tính x^2+y^2; x^3-y^3; x^5-y^5
Các cậu ơi giúp mk vs ai trl đc mk sẽ tick
Nhanh hộ mk nha
a) \(x^2+y^2=\left(x+y\right)^2-2xy=1^2-2.\left(-6\right)=13\)
\(x^3+y^3=\left(x+y\right)^3-3xy\left(x+y\right)=1^3-3.\left(-6\right).1=19\)
\(x^5+y^5=\left(x^2+y^2\right)\left(x^3+y^3\right)-x^2y^2\left(x+y\right)=13.19-\left(-6\right)^2.1=211\)
b) \(x^2+y^2=\left(x-y\right)^2+2xy=1^1+2.6=13\)
\(x^3-y^3=\left(x-y\right)^3+3xy\left(x-y\right)=1^3+3.6.1=19\)
\(x^5-y^5=\left(x^2+y^2\right)\left(x^3-y^3\right)+x^2y^2\left(x-y\right)=13.19+6^2.1=283\)
Cho (x – y):( x + y): xy = 1:7:24 (x,y khác 0). Tìm x, y
Ta có : \(\frac{x-y}{1}=\frac{x+y}{7}=\frac{\left(x-y\right)+\left(x+y\right)}{1+7}=\frac{2x}{8}=\frac{x}{4}\)
\(\frac{x}{4}=\frac{xy}{24}\Leftrightarrow\frac{6x}{24}=\frac{xy}{24}\) => 6x = xy => y = 6
\(\frac{x-6}{1}=\frac{x+6}{7}\)
<=> 7(x - 6) = x + 6
<=> 7x - 42 = x + 6
<=> 7x - x = 6 + 42
<=> 6x = 48
=> x = 8
Vậy x = 8 ; y = 6
cho x, y, z khác 0 thỏa mãn 1/xy + 1/yz + 1/xz =0. Tính N= x^2/yz + y^2/xz + z^2/xy
LÀM ƠN GIÚP MK VỚI, MK CẦN GẤP LẮM!!!
nhấn vào đúng 0 sẽ ra kết quả mình làm bài này rồi
cho x, y, z khác 0 thỏa mãn 1/xy + 1/yz + 1/xz =0. Tính N= x^2/yz + y^2/xz + z^2/xy
LÀM ƠN GIÚP MK VỚI, MK CẦN GẤP LẮM!!!
Cho biểu thức: P = 2/x - (x^2/x^2+xy + y^2-x^2/xy - y^2/xy+y^2).x+y/x^2+xy+y^2 với x khác 0, y khác 0, x khác -y
1) Rút gọn biểu thức P.
2) Tính giá trị của biểu thức P, biết x, y thỏa mãn đẳng thức:
x^2+y^2+10=2(x-3y)
Giúp mk với!!!!!!!! Help me! @_@
Chứng minh rằng : x^5 + y^5 ≥ x^4y + xy^4 với x, y ≠ 0 và x + y ≥ 0
Giải giùm mk xog thì kết bạn nha ai nhanh mk sẽ tick cho!^^
Đề thế này phải ko bạn:
Chứng minh rằng: \(x^5+y^5\ge x^4.y+x.y^4\)với \(x,y\ne0\)và\(x+y\ge0\)
bạn vào fx viết lại đề đi nha, sai đề rùi
Ta có: \(x^5+y^5\ge x^4.y+x.y^4\)(1)
<=>\(x^5+y^5-x^4.y-x.y^4\ge0\)
<=>\(\left(x^5-x^4.y\right)-\left(x.y^4-y^5\right)\ge0\)
<=>\(x^4.\left(x-y\right)-y^4.\left(x-y\right)\ge0\)
<=>\(\left(x^4-y^4\right).\left(x-y\right)\ge0\)
<=>\(\left[\left(x^2\right)^2-\left(y^2\right)^2\right].\left(x-y\right)\ge0\)
<=>\(\left(x^2+y^2\right).\left(x^2-y^2\right).\left(x-y\right)\ge0\)
<=>\(\left(x^2+y^2\right).\left(x+y\right).\left(x-y\right).\left(x-y\right)\ge0\)
<=>\(\left(x^2+y^2\right).\left(x+y\right).\left(x-y\right)^2\ge0\)
Vì \(x^2+y^2\ge0,\left(x-y\right)^2\ge0\)
=>(1)<=>\(x+y\ge0\)(2)
Vì \(x+y\ge0\)(theo giả thiết)
=>(2) đúng với mọi x,y
Vì các dấu"<=>" có giá trị như nhau
=>(1) đúng với mọi x,y
=>ĐPCM