Những câu hỏi liên quan
PN
Xem chi tiết
DN
27 tháng 9 2016 lúc 17:20

a) = 9(x2 - 2.x/2.9 + 1/324) - 9/324 +5

GTNN A = 4,97

b) = (2x +y)2 + y2 + 2018

GTNN B = 2018 khi x=0;y=0

c) = -4(x2 - 2.3x/ 4.2 + 9/16) +9/16 +10

GTLN C = 169/16

d) = -(x-y)2 - (2x +1) +1 + 2016

GTLN D = 2017

(trg bn cho bài khó dữ z, làm hại cả não tui)

Bình luận (0)
PN
29 tháng 9 2016 lúc 14:39

cảm ơn nhiều lắm đấy

Bình luận (0)
TS
Xem chi tiết
DL
29 tháng 6 2015 lúc 8:38

A=|4x-1/4|+2016

Ta có: |4x-1/4|>=0

=>|4x-1/4|+2016>=2016 Hay A>=2016

Nên giá trị nhỏ nhất của A là 2016 khi

4x-1/4=0

4x=0+1/4

4x=1/4

x=1/4:4

x=1/16

Vậy GTNN của A là 2016 khi x=1/16

B=2014-|3x-1/5|

Ta có: |3x-1/5|>=0

2014-|3x-1/5|<=2014 hay B<=2014

Nên GTLN của B là 2014 khi:

3x-1/5=0

3x=0+1/5

3x=1/5

x=1/5:3

x=1/15

Vậy GTNN của B là 2014 khi x=1/15

Bình luận (0)
TT
29 tháng 6 2015 lúc 8:37

GTTĐ luôn >= 0 

Áp dụng ta có

A = l 4x -1/4l + 2016 Nhỏ hơn bằng 0 + 2014 = 2014 

Vậy GTNN của A là 2014 khi 4x - 1/4 = 0 => x = ...

TA có

B = 2014 - l 3x - 1/5l lớn hơn bằng 2014 - 0 = 2014

Vậy GTLN là 2014 khi 3x - 1/5 = 0

Bình luận (0)
DV
29 tháng 6 2015 lúc 8:41

A = |4x - \(\frac{1}{4}\)| + 2016 có GTLN

\(\Leftrightarrow\) |4x - \(\frac{1}{4}\)| có GTLN

\(\Leftrightarrow\) x có GTLN

\(\Rightarrow\) Không tìm được GTLN của A

A = |4x - \(\frac{1}{4}\)| + 2016 có GTNN

\(\Leftrightarrow\) |4x - \(\frac{1}{4}\)| có GTNN

\(\Rightarrow\) |4x - \(\frac{1}{4}\)| = 0

\(\Rightarrow\) x = \(\frac{1}{16}\) để A có GTNN

Bình luận (0)
TS
Xem chi tiết
DT
Xem chi tiết
NM
7 tháng 11 2021 lúc 11:49

\(A=\left(x-1\right)^2+8\ge8\\ A_{min}=8\Leftrightarrow x=1\\ B=\left(x+3\right)^2-12\ge-12\\ B_{min}=-12\Leftrightarrow x=-3\\ C=x^2-4x+3+9=\left(x-2\right)^2+8\ge8\\ C_{min}=8\Leftrightarrow x=2\\ E=-\left(x+2\right)^2+11\le11\\ E_{max}=11\Leftrightarrow x=-2\\ F=9-4x^2\le9\\ F_{max}=9\Leftrightarrow x=0\)

Bình luận (0)
DT
Xem chi tiết
HH
Xem chi tiết
NM
30 tháng 10 2021 lúc 11:53

\(A=-2x^2+4xy-2y^2+4\left(x-y\right)-2-8y^2+8y+2019\\ A=\left[-2\left(x-y\right)^2+4\left(x-y\right)-2\right]-8\left(y^2-y+\dfrac{1}{4}\right)+2020\\ A=-2\left(x-y-1\right)^2-8\left(y-\dfrac{1}{2}\right)^2+2020\le2020\\ A_{max}=2020\Leftrightarrow\left\{{}\begin{matrix}x-y=1\\y=\dfrac{1}{2}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=1+\dfrac{1}{2}=\dfrac{3}{2}\\y=\dfrac{1}{2}\end{matrix}\right.\)

Bình luận (1)
DP
Xem chi tiết
VT
25 tháng 7 2016 lúc 17:18

a) A= x+ 4x + 5

=x2+4x+4+1

=(x+2)2+10+1=1

Dấu = khi x+2=0 <=>x=-2

Vậy Amin=1 khi x=-2

b) B= ( x+3 ) ( x-11 ) + 2016

=x2-8x-33+2016

=x2-8x+16+1967

=(x-4)2+19670+1967=1967

Dấu = khi x-4=0 <=>x=4

Vậy Bmin=1967 <=>x=4

Bài 2:

a) D= 5 - 8x - x

=-(x2+8x-5)

=21-x2+8x+16

=21-x2+4x+4x+16

=21-x(x+4)+4(x+4)

=21-(x+4)(x+4)

=21-(x+4)20+21=21

Dấu = khi x+4=0 <=>x=-4

Bình luận (0)
NL
10 tháng 10 2017 lúc 16:01

Bài 1:

c)C=x2+5x+8

=x2+5x+\(\left(\dfrac{5}{2}\right)^2\)+\(\dfrac{7}{4}\)

=\(\left(x+\dfrac{5}{2}\right)^2\)+\(\dfrac{7}{4}\)\(\ge\dfrac{7}{4}\)

Vậy \(C_{min}=\dfrac{7}{4}\Leftrightarrow x=-\dfrac{5}{2}\)

Bình luận (0)
NH
Xem chi tiết
PB
Xem chi tiết
CT
25 tháng 1 2019 lúc 4:17

Bình luận (0)