Những câu hỏi liên quan
NN
Xem chi tiết
H24
1 tháng 9 2019 lúc 19:59

Dat \(\hept{\begin{cases}A=\frac{b+c}{a}+\frac{c+a}{b}+\frac{a+b}{c}\\B=\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}\end{cases}}\)

Ta co:\(A=\left(\frac{a}{b}+\frac{b}{a}\right)+\left(\frac{b}{c}+\frac{c}{b}\right)+\left(\frac{c}{a}+\frac{a}{c}\right)\ge2+2+2=6\left(1\right)\)

\(B=\frac{a+b+c}{a+b}+\frac{a+b+c}{b+c}+\frac{a+b+c}{c+a}-3\)

\(=\left(a+b+c\right)\left(\frac{1}{a+b}+\frac{1}{b+c}+\frac{1}{c+a}\right)-3\ge\left(a+b+c\right).\frac{9}{2\left(a+b+c\right)}-3=\frac{3}{2}\left(2\right)\)

Cong ve voi ve cua (1) va (2) ta duoc:

\(P=A+B\ge6+\frac{3}{2}=\frac{15}{2}\)

Dau '=' xay ra khi \(a=b=c\)

Bình luận (0)
2T
1 tháng 9 2019 lúc 19:56

Chứng minh ĐBT:\(\frac{b}{a}+\frac{a}{b}\ge2\left(a,b\ne0\right)\)(Dấu "="\(\Leftrightarrow a=b=1\))

Ta có: \(\left(a-b\right)^2\ge0\)

\(\Leftrightarrow a^2-2ab+b^2\ge0\)

\(\Leftrightarrow a^2+b^2\ge2ab\)

\(\Leftrightarrow\frac{a^2+b^2}{ab}\ge2\)

\(\Leftrightarrow\frac{a}{b}+\frac{b}{a}\ge2\left(đpcm\right)\)

Vậy \(\frac{b+c}{a}+\frac{a}{b+c}\ge2\)

\(\frac{a+c}{b}+\frac{b}{c+a}\ge2\)

\(\frac{a+b}{c}+\frac{c}{b+a}\ge2\)

\(\Rightarrow P\ge6\)

Vậy \(P_{min}=6\Leftrightarrow\hept{\begin{cases}a=b+c\\b=a+c\\c=a+b\end{cases}}\)

Bình luận (0)
NK
1 tháng 9 2019 lúc 20:04

dấu = ko xảy ra => tất cả sai:)

Bình luận (0)
GN
Xem chi tiết
H24
4 tháng 8 2017 lúc 21:12

ban oi mk dat cau hoi nay cac ban giup mk vs

Bình luận (0)
H24
4 tháng 8 2017 lúc 21:13

1/2x + 3/5 . ( x- 2 ) = 3

Bình luận (0)
DH
4 tháng 8 2017 lúc 21:14

Ta có :

\(\frac{c}{a+b}+\frac{b}{a+c}+\frac{a}{b+c}=\frac{3}{2}\)

\(\Leftrightarrow\frac{c}{a+b}+1+\frac{b}{a+c}+1+\frac{a}{b+c}+1=\frac{3}{2}+3\)

\(\Leftrightarrow\frac{a+b+c}{a+b}+\frac{a+b+c}{a+c}+\frac{a+b+c}{b+c}=\frac{9}{2}\)

\(\Leftrightarrow\left(a+b+c\right)\left(\frac{1}{a+b}+\frac{1}{a+c}+\frac{1}{b+c}\right)=\frac{9}{2}\)

\(\Leftrightarrow6.\left(\frac{1}{a+b}+\frac{1}{a+c}+\frac{1}{b+c}\right)=\frac{9}{2}\)

\(\Rightarrow\frac{1}{a+b}+\frac{1}{a+c}+\frac{1}{b+c}=\frac{9}{2}:6=\frac{3}{4}\)

Vậy \(P=\frac{3}{4}\)

Bình luận (0)
KS
Xem chi tiết
NP
1 tháng 8 2018 lúc 21:03

Áp dụng dãy tỉ số bằng nhau:

\(\frac{a}{3}=\frac{b}{4}=\frac{c}{11}=\frac{b+c-a}{4+11-3}=\frac{b+c-a}{12}=\frac{a+c-b}{3+11-4}=\frac{a+c-b}{10}\)

\(\Rightarrow\frac{b+c-a}{a+c-b}=\frac{12}{10}=\frac{6}{5}\)

Bình luận (0)
KS
2 tháng 8 2018 lúc 18:14

mk làm kiểu khác

Đặt \(\frac{a}{3}=\frac{b}{4}=\frac{c}{11}=k\)

\(\Rightarrow a=3k;b=4k;c=11k\)(1)

Thay (1) vào biểu thức A ta được:

\(\frac{4k+11k-3k}{3k+11k-4k}=\frac{12k}{10k}=\frac{6}{5}\)

Vậy..................

Bình luận (0)
HT
Xem chi tiết
LP
Xem chi tiết
NM
17 tháng 4 2017 lúc 15:05

Theo đề ta có

\(\frac{a}{2009}=\frac{b}{2010}=\frac{c}{2011}=\frac{a-b}{2009-2010}=\frac{b-c}{2010-2011}=\frac{a-c}{2009-2011}\)

=> \(\frac{a-b}{-1}=\frac{b-c}{-1}=\frac{a-c}{-2}\)

\(=>\hept{\begin{cases}a-b=b-c\\-2\left(a-b\right)=-1\left(a-c\right)=c-a\end{cases}}\)

=> M=4(a-b)(b-c)-(c-a)2=4(a-b)(a-b)-[-2(a-b)]2

        =4(a-b)2-4(a-b)2

       =0

Vậy M=0

Bình luận (0)
LT
5 tháng 4 2020 lúc 10:54

a/2009=b/2010=c/2011

Bình luận (0)
 Khách vãng lai đã xóa
NT
5 tháng 4 2020 lúc 13:45

Trả lời 

= 0

Học tốt nhé bạn 

Bình luận (0)
 Khách vãng lai đã xóa
EG
Xem chi tiết
BH
Xem chi tiết
H24
Xem chi tiết
LT
Xem chi tiết
H24

Ta có: \(\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}=1\)

\(\Rightarrow\left(a+b+c\right)\left(\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}\right)=a+b+c\)

\(\Leftrightarrow\frac{a^2+a\left(b+c\right)}{b+c}+\frac{b^2+b\left(c+a\right)}{c+a}+\frac{c^2+c\left(a+b\right)}{a+b}=a+b+c\)

\(\Leftrightarrow\frac{a^2}{b+c}+a+\frac{b^2}{c+a}+b+\frac{c^2}{a+b}+c=a+b+c\)

\(\Leftrightarrow\frac{a^2}{b+c}+\frac{b^2}{c+a}+\frac{c^2}{a+b}=0\)

Bình luận (0)
NQ
13 tháng 1 2018 lúc 22:15

Có : 

Q = a.(a/b+c) + b.(b/c+a) + c.(c/a+b)

   = a.(a/b+c + 1) + b.(b/c+a + 1) + c.(c/a+b + 1) - (a+b+c)

   = a.(a+b+c)/b+c + b.(a+b+c)/c+a + c.(a+b+c)/a+b - (a+b+c)

   = (a+b+c).(a/b+c + b/c+a + c/a+b) - (a+b+c)

   = (a+b+c)-(a+b+c) = 0

Vậy Q = 0

Tk mk nha

Bình luận (0)