Những câu hỏi liên quan
KB
Xem chi tiết
MT
Xem chi tiết
BK
23 tháng 11 2015 lúc 17:56

A  chia het cho 2 cho 3 Vì 6 và 18 chia het cho 2va 3

A khong chia het cho 9 vi 2.4.6.8.10 khong chia het cho 9

Bình luận (0)
TS
Xem chi tiết
PD
9 tháng 2 2019 lúc 20:42

\(S=1+2+2^2+...+2^{2015}\)

\(\Rightarrow2S=2+2^2+...+2^{2016}\)

\(\Rightarrow2S-S=S=2^{2016}-1\)

\(S+18=2^{2016}+18-1=2^{2016}+17\)

Tự làm , đề sai rroi

Bình luận (0)
H24
Xem chi tiết
LC
23 tháng 8 2019 lúc 22:27

a) \(A=2+2^2+....+2^{2019}\)

\(\Rightarrow2A=2^2+2^3+....+2^{2020}\)

\(\Rightarrow2A-A=2^{2020}-2\)

\(\Rightarrow A=2^{2020}-2\)

b) \(A+2=2^{2020}-2+2=2^{2020}=\left(2^{1010}\right)^2\)là SCP

làm nốt lười 

Bình luận (0)
HP
Xem chi tiết
WR
28 tháng 6 2019 lúc 20:42

\(2a=2^3+2^4+...+2^{2021}.\)

\(\Rightarrow a=2^{2021}-4\Rightarrow a+4=2^{2021}=2.\left(2^{1010}\right)^2\)không là số chính phương

Bình luận (0)
DD
Xem chi tiết
H24
8 tháng 1 2016 lúc 15:33

a có là số chính phương

Bình luận (0)
NU
Xem chi tiết
DH
1 tháng 2 2017 lúc 15:35

A = 1 + 2 + 22 + .... + 22017

2A = 2(1 + 2 + 22 + .... + 22017 )

= 2 + 22 + 23 + ..... + 22018

2A - A = ( 2 + 22 + 23 + ..... + 22018)- ( 1 + 2 + 22 + .... + 22017 )

A = 22018 - 1

=> A + 1 = 22018 = ( 21009)2 là số chính phương

Do đó A không thể là số chính phương

Bình luận (0)
DA
Xem chi tiết
H24
16 tháng 4 2016 lúc 8:56

Ta có : A có tổng các chữ số bằng 12 ,do đó A chia hết cho 3. (1).
Lại có A có chữ số tận cùng là 008 do đó A chia hết cho 8 (2).
Từ (1) và (2) : ta có A chia hết cho 3 và 8 mà (3;8)=1 nên A chia hết cho 24
Vì A có chữ số tận cùng là 8 nên A không phải là số chính phương

Bình luận (0)
H24
16 tháng 4 2016 lúc 9:00

Ta có : A có tổng các chữ số bằng 12 ,do đó A chia hết cho 3. (1).
Lại có A có chữ số tận cùng là 008 do đó A chia hết cho 8 (2).
Từ (1) và (2) : ta có A chia hết cho 3 và 8 mà (3;8)=1 nên A chia hết cho 24
Vì A có chữ số tận cùng là 8 nên A không phải là số chính phương.

Bình luận (0)
PN
Xem chi tiết
H24
15 tháng 7 2019 lúc 9:47

\(A=1+3+....+\left(2n+1\right)=\frac{\left(2n+2\right)\left(n+1\right)}{2}=\left(n+1\right)^2\)

Bình luận (0)
XO
15 tháng 7 2019 lúc 9:49

A = 1 + 3 + 5 + 7 + ... + 2n + 1

   = \(\left[\left(2n+1-1\right):2+1\right].\left(\frac{2n+1+1}{2}\right)\)

   = \(\left(n+1\right).\left(n+1\right)\)

   = \(\left(n+1\right)^2\)

=> A là số chính phương (đpcm)

b) \(2+4+6+...+2n\)

\(\left[\left(2n-2\right):2+1\right].\frac{2n+2}{2}\)

\(n.\left(n+1\right)\)

\(n^2+n\)

\(\Rightarrow\)B không là số chính phương

Bình luận (0)
BN
15 tháng 7 2019 lúc 9:50

a) A có số số hạng là: (2n+1-1) :2 +1 = n+1 (số)

=> \(A=\frac{\left(2n+1+1\right).\left(n+1\right)}{2}\)

           \(=\frac{2\left(n+1\right)\left(n+1\right)}{2}\)

   \(A=\left(n+1\right)^2\)

\(\Rightarrow A\)là số chính phương 

Bình luận (0)