Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6


Những câu hỏi liên quan
TG
Xem chi tiết
H24
19 tháng 10 2018 lúc 20:33

\(A=2^{2019}-\left(2^{2018}+2^{2017}+2^{2016}+.....+2^1+2^0\right)\)

Đặt: \(B=2^{2018}+2^{2017}+2^{2016}+....+2^1+2^0\)

\(\Rightarrow2B=\left(2^{2018}+2^{2017}+2^{2016}+...+2^1+2^0\right)\)

\(\Rightarrow2B-B=\left(2^{2019}+2^{2018}+2^{2017}+...+2^2+2\right)-\left(2^{2018}+2^{2017}+2^{2016}+...+2^1+2^0\right)\)

\(\Rightarrow B=2^{2019}-1\)

\(\Rightarrow A=2^{2019}-\left(2^{2018}+2^{2017}+2^{2016}+.....+2^1+2^0\right)\)

\(=2^{2019}-\left(2^{2019}-1\right)=2^{2019}+2^{2019}+1>1\)

Bình luận (0)
TG
19 tháng 10 2018 lúc 20:36

đoạn cuối cùng bạn làm sai rồi

Bình luận (0)
H24
19 tháng 10 2018 lúc 20:38

Mình nhầm ạ ~

\(2^{2019}-\left(2^{2019}-1\right)=2^{2019}-2^{2019}+1=1.\)

Bình luận (0)
NT
Xem chi tiết
KR
26 tháng 6 2017 lúc 13:41

\(A=\frac{1}{2.2}+\frac{1}{3.3}+\frac{1}{4.4}+....+\frac{1}{2017.2017}\)

Ta có :

\(\frac{1}{2.2}< \frac{1}{1.2}\)

\(\frac{1}{3.3}< \frac{1}{2.3}\)

\(\frac{1}{4.4}< \frac{1}{3.4}\)

........

\(\frac{1}{2017.2017}< \frac{1}{2016.2017}\)

=> \(A=\frac{1}{2.2}+\frac{1}{3.3}+\frac{1}{4.4}+....+\frac{1}{2017.2017}< \frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+....+\frac{1}{2016.2017}\)

\(=\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+.....+\frac{1}{2016}-\frac{1}{2017}\)

\(=1-\frac{1}{2017}< 1\)

=> A < 1 

Bình luận (0)
H24
26 tháng 6 2017 lúc 13:43

\(a=\frac{1}{2.2}+\frac{1}{3.3}+........+\frac{1}{2017.2017}\)

\(a< \frac{1}{1.2}+\frac{1}{2.3}+......+\frac{1}{2016.2017}\)

\(a< 1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+......+\frac{1}{2016}-\frac{1}{2017}\)

\(a< 1-\frac{1}{2017}\)

Do \(a< 1-\frac{1}{2017}\)

  \(\Rightarrow a< 1\)

Bình luận (0)
ZA
Xem chi tiết
DE
Xem chi tiết
H24
17 tháng 5 2018 lúc 9:32

Có \(\frac{2016}{2017}=1-\frac{1}{2017}\Rightarrow\frac{2016}{2017}+\frac{1}{2017}=1\)1

\(\frac{2017}{2018}=1-\frac{1}{2018}\)

mà 1 = 1 và 2017 < 2018 nên \(\frac{1}{2017}>\frac{1}{2018}\)

suy ra \(\frac{2016}{2017}< \frac{2017}{2018}\)mặc khác \(\frac{2016}{2017}>\frac{1}{2017}\)nên\(\frac{2017}{2018}>\frac{1}{2017}\)do đó \(\frac{2016}{2017}+\frac{2017}{2018}>1\)

Bình luận (0)
PA
Xem chi tiết
TD
30 tháng 6 2017 lúc 15:33

Ta có : 

\(T=\frac{2}{2^1}+\frac{3}{2^2}+\frac{4}{2^3}+...+\frac{2016}{2^{2015}}+\frac{2017}{2^{2016}}\) 

Bình luận (0)
TD
30 tháng 6 2017 lúc 15:40

\(T=1+\frac{3}{1.2^2}+\frac{4}{2.2^2}+\frac{5}{2^2.2^2}+...+\frac{2016}{2^{2013}.2^2}+\frac{2017}{2^{1014}.2^2}\)

\(=1+\frac{1}{2^2}.\left(3+2+\frac{5}{4}+\frac{6}{8}+...+\frac{2016}{x}+\frac{2017}{x}\right)\)

\(=1+\frac{1}{2^2}.\left(3+2+\frac{5}{2^2}+\frac{6}{2^3}+...+\frac{2016}{2^{2013}}+\frac{2017}{2^{2014}}\right)\)

Đến chỗ này chịu!

Bình luận (0)
H24
8 tháng 4 2018 lúc 20:17

Ta có

\(T=1+\frac{3}{1\cdot2^2}+\frac{4}{2\cdot2^2}+...+\frac{2017}{2^2\cdot2^{2014}}\) 

\(T=1+\frac{1}{2^2}\cdot\left(3+2+\frac{5}{2^2}+\frac{6}{2^3}+...+\frac{2016}{2^{2014}}+\frac{2017}{2^{2015}}\right)\)

Bình luận (0)
VD
Xem chi tiết
NL
Xem chi tiết
H24
1 tháng 3 2017 lúc 18:09

2016 <2017 ; 2017 > 2016 rễ thui mà bạn

Bình luận (0)
CC
Xem chi tiết
TN
Xem chi tiết