Những câu hỏi liên quan
KG
Xem chi tiết
NH
Xem chi tiết
ND
Xem chi tiết
DV
17 tháng 7 2015 lúc 22:01

Sửa lại một số chỗ :

Ta có: 
(n2−8)2+36=(n2−6n+10)(n2+6n+10)
Để (n2−8)2+36 là số nguyên tố thì n2−6n+10=1 hoặc n2+6n+10=1
TH1: n2−6n+10=1
⇔ n=3
Thử lại thấy đúng.
TH2: n2+6n+10=1
⇔ n=−3 (loại vì n∈N)
Vậy với n=3 thì (n2−8)2+36 là số nguyên tố.

Bình luận (0)
NT
4 tháng 3 2016 lúc 20:25

Tại sao (n^2-8)^2 +36 lại bằng ( n^2 -6n+1-)(n^2+6n+10) Vậy các bạn???
Giải thích giùm mình nha
Tks

Bình luận (0)
VH
13 tháng 5 2017 lúc 20:51

Ta có:

  (n2-8)2+36

=[(n2+10)-18]2

=(n2+10)2-2(n2+10).18+182+36

=(n2+10)2-(6n)2-360+324+36

=(n2+10-6n)(n2+10+6n)

Bình luận (0)
LC
Xem chi tiết
ZZ
1 tháng 12 2019 lúc 19:01

\(\left(n^2-8\right)^2+36\)

\(=n^4-16n^2+100\)

\(=\left(n^2+10\right)^2-\left(6n\right)^2\)

\(=\left(n^2-6n+10\right)\left(n^2+6n+10\right)\)

Để \(\left(n^2-8\right)^2+36\) là số nguyên tố thì \(n^2-6n+10=1\left(h\right)n^2+6n+10=1\)

Do \(n\in N\Rightarrow n^2+6n+10>n^2-6n+10\)

\(\Rightarrow n^2-6n+10=1\)

\(\Leftrightarrow\left(n-3\right)^2=0\Leftrightarrow n=3\)

Bình luận (0)
 Khách vãng lai đã xóa
HQ
Xem chi tiết
VN
Xem chi tiết
NV
Xem chi tiết
H24
2 tháng 11 2016 lúc 21:43

\(p=\left(n-1\right)^2\left[\left(n-1\right)^2+1\right]+1\)

\(\left(n-1\right)^4+2.\left(n-1\right)^2+1-\left(n-1\right)^2\)

\(\left[\left(n-1\right)^2+1\right]^2-\left(n-1\right)^2\)

\(\left[\left(n-1\right)^2+1-\left(n-1\right)\right]\left[\left(n-1\right)^2+1+\left(n-1\right)\right]\)

\(\left[n^2-3n+3\right]\left[n^2-n+1\right]\)

can

\(\orbr{\begin{cases}n^2-3n+3=1\Rightarrow n=\orbr{\begin{cases}n=2\\n=1\end{cases}}\\n^2-n+1=1\Rightarrow n=\orbr{\begin{cases}n=0\\n=1\end{cases}}\end{cases}}\)\(\orbr{\begin{cases}n^2-3n+3=1\\n^2-n+1=1\end{cases}}\)

n=(0,1,2)

du

n=2

ds: n=2

Bình luận (0)
GS
Xem chi tiết
LH
Xem chi tiết