tính 2010*2010-2009*2009+2008*2008-........+2*2-1*1
Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6
a) 2010/1+2009/2+2008/3+ ... +1/2010+2010 : 1+1/2+1/3+ ... +1/2010=
b) 1/2011+1/2010+1/2009+ ... +1/3+1/2 : 2010/1+2009/2+2008/3+ ... +1/2010=
tính 2010*2010-2009*2009+2008-.....+2*2-1*1
2010×2010 - 2009×2009 +2008×2008-...+2×2-1×1 ai làm nhanh nhất mk tk cho
\(2010^2-2009^2+2008^2-...+2^2-1^2\)
\(=-\left(1^2-2^2+3^2-...+2009^2-2010^2\right)\)
\(=-\left[1^2+2^2+...+2009^2+2010^2-\left(2^2+4^2+...+2010^2\right)\right]\)
\(=-\left[\frac{2010.\left(2010-1\right)\left(2.2010-1\right)}{6}-2^2\left(1^2+2^2+...+1005^2\right)\right]\)
\(=-\left[2704847285-2^2.\frac{1005\left(1005-1\right)\left(2.1005-1\right)}{6}\right]\)
\(=-\left(2704847285-1351414120\right)=1353433165\)
2010×2010 - 2009×2009 +2008×2008-...+2×2-1×1
=2 x 2010 - 2 x 2009 + .......+ 2 x 2 - 2 x 1
=2x(2010-2009+2008-.......+2-1)
=2x[(2010-2019)+......+(2-1)]
=2x ( 1+ 1+....+1)
=2x1005
=2010
tính tổng sau :\(c=\frac{\frac{1}{2008}-\frac{1}{2009}-\frac{1}{2010}}{\frac{5}{2008}-\frac{5}{2009}-\frac{5}{2010}}+\)\(\frac{\frac{2}{2007}-\frac{2}{2008}-\frac{2}{2009}}{\frac{3}{2007}-\frac{3}{2008}-\frac{3}{2009}}\)
\(C=\frac{\frac{1}{2008}-\frac{1}{2009}-\frac{1}{2010}}{\frac{5}{2008}-\frac{5}{2009}-\frac{5}{2010}}+\frac{\frac{2}{2007}-\frac{2}{2008}-\frac{2}{2009}}{\frac{3}{2007}-\frac{3}{2008}-\frac{3}{2009}}\)
\(=\frac{\frac{1}{2008}-\frac{1}{2009}-\frac{1}{2010}}{5.\left(\frac{1}{2008}-\frac{1}{2009}-\frac{1}{2010}\right)}+\frac{2.\left(\frac{1}{2007}-\frac{1}{2008}-\frac{1}{2009}\right)}{3.\left(\frac{1}{2007}-\frac{1}{2008}-\frac{1}{2009}\right)}\)
\(=\frac{1}{5}+\frac{2}{3}\)
\(=\frac{13}{15}\)
Tính nhanh:
a,1/2009+2/2009+3/2009+......2008/2009
b,2010*2010*20092009-2009*2009*20102010/2009*20052005
a, \(\frac{1}{2009}+\frac{2}{2009}+...+\frac{2008}{2009}\\ \frac{\left(1+2008\right)\cdot2008\div2}{2009}=\frac{2017036}{2009}\)
Bài 2 : So sánh
A=2008/2009+2009+2010+2010+2011 và B=2008+20092+2010/2009+2010+2011
\(B=\frac{\frac{2008}{2011}+\frac{2009}{2010}+\frac{2010}{2009}+\frac{2011}{2008}+\frac{2012}{503}}{\frac{1}{2008}+\frac{1}{2009}+\frac{1}{2010}+\frac{1}{2011}}\)
Tính nhanh
( 9/2010 + 10/2009 + 11/2008 - 1/2018 - 1/2017) ÷ ( 1/2019 + 1/2018 + 1/2017 - 1/2010 - 1/2009 - 1/2008)
Bài 2 : So sánh
\(A=\dfrac{2008}{2009}+\dfrac{2009}{2010}+\dfrac{2010}{2011}vàB=\dfrac{2008+2009+2010}{2009+2010+2011}\)
Ta có :
\(B=\frac{2008+2009+2010}{2009+2010+2011}=\frac{2008}{2009+2010+2011}+\frac{2009}{2009+2010+2011}+\frac{2010}{2009+2010+2011}\)
Vì :
\(\frac{2008}{2009}>\frac{2008}{2009+2010+2011}\)
\(\frac{2009}{2010}>\frac{2009}{2009+2010+2011}\)
\(\frac{2010}{2011}>\frac{2010}{2009+2010+2011}\)
Nên \(\frac{2008}{2009}+\frac{2009}{2010}+\frac{2010}{2011}>\frac{2008}{2009+2010+2011}+\frac{2009}{2009+2010+2011}+\frac{2010}{2009+2010+2011}\)
\(\Rightarrow\)\(A>B\)
Vậy \(A>B\)
Ta có: \(B=\frac{2008+2009+2010}{2009+2010+2011}\)
\(=\frac{2008}{2009+2010+2011}+\frac{2009}{2009+2010+2011}+\frac{2010}{2009+2010+2011}\)
Vì \(\frac{2008}{2009}>\frac{2008}{2009+2010+2011}\)
\(\frac{2009}{2010}>\frac{2009}{2009+2010+2011}\)
\(\frac{2010}{2011}>\frac{2010}{2009+2010+2011}\)
nên \(\frac{2008}{2009}+\frac{2009}{2010}+\frac{2010}{2011}>\frac{2008+2009+2010}{2009+2010+2011}\)
hay A > B
Vậy A > B