Những câu hỏi liên quan
AF
Xem chi tiết
WG
10 tháng 1 2017 lúc 21:07

tổng hoặc hiệu của 3 số lẻ bất kì ko bao giờ chia hết cho 8

chỉ chia hết cho 3 thôi

nha bn đề sai

Bình luận (0)
NC
Xem chi tiết
NM
5 tháng 4 2016 lúc 17:55

Bài 1

6 số tự nhiên bất kì khi chia cho 6 thì xảy ra 6 trường hợp về số dư (0;1;2;3;4;5), còn 1 số kia thì cũng có thể xảy ra 1 trong 6 trường hợp

Số này nếu trừ cho 1 trong 6 số kia thì chắc chắn có 1 số thỏa mãn

Bài 2

5 số tự nhiên liên tiêp này chia cho 5 cũng xảy ra 5 th về dư, chứng minh tương tự bài 1. Bạn cố gắng dùng từ hay hơn nha

Bình luận (0)
US
Xem chi tiết
NL
Xem chi tiết
NL
19 tháng 5 2018 lúc 23:12

Ta có : 

Số lẻ chia 8 dư : 1,3,5,7

Chia 2 nhóm 

+ Nhóm 1 :Chia 8 dư 1,7

+Nhóm 2 :Chia 8 dư 3,5 

3 số lẻ chia 8 có 3 số dư

3 số dư \(\in\)2 nhóm :theo nguyên lí direclê sẽ có một nhóm chứa ít nhất 2 số dư 

TH1 : 2 số dư khác nhau

=> Tổng 2 số chia hết cho 8 

TH2 : 2 số dư giống nhau 

=> Hiệu 2 số chia hết cho 8

Kb vs mk k?Chúc bạn học tốt

Bình luận (0)

Tữ hỏi tự trả lời , ăn gian quá .

Bình luận (0)
KC
Xem chi tiết
LM
23 tháng 10 2018 lúc 20:09

Có 5 số, và 3 số dư khi chia cho 3 là 0;1;2 
Nếu có 3,4 hay 5 số mà có cùng số dư khi chia cho 3 thì tổng 3 trong số đó chia hết cho 3. 
Nếu có ít hơn 3 nghĩa là nhiều nhất 2 số có cùng số dư khi chia cho 3 thì trong 5 số đó cùng tồn tại các số chia 3 dư 0;1;2 nên tổng 3 số có số dư khi chia cho 3 khác nhau sẽ chia hết cho 3. 
Do đó trong 5 số nguyên bất kì luôn tìm được 3 số có tổng chia hết cho 3.

Bình luận (0)
TP
Xem chi tiết
DT
25 tháng 6 2015 lúc 16:46

 Chứng minh tồn tại hai số có tổng hoặc hiệu chia hết cho 100 - Các dạng toán khác - Diễn đàn Toán học

Nếu có hai số cùng chia hết cho 100 thì bài toán được chứng minhNếu có đúng một số chia hết cho 100, 51 số còn lại không chia hết cho 100

Xét 50 cặp số dư : (1;99);(2;98);(3;97);...;(50;50)

Theo nguyên lí Dirichlet, tồn tại hai số mà số dư của chúng khi chia cho 50 là một trong 50 cặp số trên.

Giả sử số dư của hai số đó rơi vào cặp (a;b) (với a+b=100)

- Nếu cả hai số cùng chia 100 dư a (hoặc dư b) thì hiệu của chúng chia hết cho 100

- Nếu hai số, một chia 100 dư a, một số chia 100 dư b thì tổng của chúng chia hết cho 100

Bài toán được chứng minh

Nếu cả 52 số đều không chia hết cho 100. Tương tự như trên

Ta có đpcm

Bình luận (0)
TP
25 tháng 6 2015 lúc 16:51

Nếu có hai số có cùng số dư khi chia cho 100 thì bài toán được giải quyết 
Giả sử có ít nhất 51 số không chia hết cho 100.Xét 50 cặp :(1,99),(2,98),......(49,51),(50,50) mà mỗi cặp có tổng là 100
Theo Đi-rich-lê ta có trong 51 số đã giả sử ở trên luôn tồn tại 2 số mà số dư của chúng khi chia cho 100 cùng rơi vào 1 cặp trong 50 cặp ở trên 
=> tổng của chúng chia hết cho 100 
=> dpcm 

có đúng k?

Bình luận (0)
NT
18 tháng 9 2017 lúc 19:14

dpcm là j v bn

Bình luận (0)
TP
Xem chi tiết
PL
Xem chi tiết
PL
24 tháng 12 2023 lúc 20:38

SOS CẦN GẤP

 

Bình luận (0)
NL
24 tháng 12 2023 lúc 20:47

CMR là j hả bn

Bình luận (0)
H24
Xem chi tiết
TP
31 tháng 3 2018 lúc 20:17

Vì có 3 số lẻ nên  số dư khi chia cho số 8 thì là các số : 1 ; 3 ; 5 ; 7 

Chia làm 2 nhóm : nhóm 1 có số dư là : 1 và 7 

                               nhóm 2 có số dư là 3 và 5 

Xảy ra 2 trường hợp :

 Trường hợp 1 :      3 số lẻ trên thuốc 1 trong 2 nhóm đã chia

Mà tổng của 1 số dư 1 và 1 số dư 7 bao giờ cũng chia hết cho 8 

và tổng của 1 số dư 3 và 5 cũng chia hết cho 8

=>  tổng của 2 số đó chia hết cho 8 

Trường hợp 2 : 3 số lẻ trên không thuộc 2 nhóm đã chia 

=>  phải có 2 số có cùng số dư 

=> hiệu của chúng phải chi hết cho 8 

Bình luận (0)
H24
31 tháng 3 2018 lúc 19:56

cố lên người giải hộ

Bình luận (0)
H24
31 tháng 3 2018 lúc 20:00

ffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff

Bình luận (0)