Tìm UCLN
a) 4n+3 và 2n+3
b) 9n+24 và 3n+4
c) 18n+3 và 21n+7
d) n+15 và n+72
Cần gấp
Tìm số tự nhiên n để các số sau nguyên tố cùng nhau:a)4n+3 và 2n+3
b)7n+13 và 2n+4
c)9n+24 và 3n+4
d)18n+3 và 21n+7
a) Đặt d = (4n + 3, 2n + 3).
Ta có \(2\left(2n+3\right)-\left(4n+3\right)⋮d\Leftrightarrow3⋮d\Leftrightarrow\) d = 1 hoặc d = 3.
Do đó muốn hai số 4n + 3 và 2n + 3 nguyên tố cùng nhau thì d khác 3, tức 4n + 3 không chia hết cho 3 hoặc 2n + 3 không chia hết cho 3
\(\Leftrightarrow n⋮3̸\).
Vậy các số tự nhiên n cần tìm là các số tự nhiên không chia hết cho 3.
Tìm stn n để các số sau nguyên tố cùng nhau
a, 4n + 3 và 2n + 3
b, 7n + 13 và 2n + 4
c, 2n + 3 và 4n + 8
d, 9n + 24 và 3n + 4
e, 18n + 3 và 21n + 7
a,tim n \(\in\) N; 4n + 3 và 2n + 3 nguyên tố cùng nhau
Gọi ước chung lớn nhất của 4n + 3 và 2n + 3 là d ta có:
\(\left\{{}\begin{matrix}4n+3⋮d\\2n+3⋮d\end{matrix}\right.\) ⇒ \(\left\{{}\begin{matrix}4n+3⋮d\\\left(2n+3\right).2⋮d\end{matrix}\right.\) \(\Rightarrow\) \(\left\{{}\begin{matrix}4n+3⋮d\\4n+6⋮d\end{matrix}\right.\)
⇒ 4n + 6 - (4n + 3) ⋮ d ⇒ 4n + 6 - 4n - 3 ⋮ d ⇒ 3 ⋮ d
⇒ d = 1; 3
Để 4n + 3 và 2n + 3 là hai số nguyên tố cùng nhau thì
2n + 3 không chia hết cho 3
2n không chia hết cho 3
n = 3k + 1; hoặc n = 3k + 2 (k \(\in\) N)
Tìm số tự nhiên n để các số sau nguyên tố cùng nhau:
a) 4n+ 3 và 2n+ 3.
b) 7n+ 13 và 2n+ 4.
c) 9n+ 24 và 3n+ 4.
d) 18n+ 3 và 21n+ 7.
Tìm số tự nhiên n để các số sau là hai số nguyên tố cùng nhau:
a)4n+3 và 2n+3
b)7n+13 và 2n+4
c)9n+24 và 3n+4
d)18n+3 và 21n+7
Tìm số tự nhiên n để các số sau nguyên tố cùng nhau
a) 4n+3 và 2n+3 b) 7n+13 vsf 2n+4
c) 9n+24 và 3n +4 d) 18n+3 và 21n+7
a) n = 0
b) n = 0
c) n = 3
d) n = 2
Chúc bạn học tốt!
Tìm số tự nhiên n để các số sau nguyên tố cùng nhau:
a)4n+3 và 2n+3b)7n+13 và 2n+4c)9n+24 và 3n+4d)18n+3 và 21n+7\(4n+3;2n+3=d\left(d\inℕ^∗\right)\)
\(4n+3⋮d\)
\(2n+3⋮d\Rightarrow4n+6⋮d\)
Suy ra : \(4n+3-4n-6⋮d\Rightarrow-3⋮d\)
Vay ta co dpcm
c,Đặt \(9n+24;3n+4=d\left(d\inℕ^∗\right)\)
\(9n+24⋮d\)
\(3n+4\Rightarrow9n+12⋮d\)
Suy ra : \(9n+24-9n-12⋮d\Rightarrow12⋮d\)
Do 12 có 2 nghiệm trở lên nên đây ko phải là 2 số nguyên tố cùng nhau
Bài 1: Tìm số tự nhiên nhỏ nhất có 12 ước số.
Bài 2: Chứng minh rằng với mọi số tự nhiên n, các số sau là hai số nguyên tố cùng nhau: a) 7n + 10 và 5n + 7 ; b) 2n + 3 và 4n + 8
c) 4n + 3 và 2n + 3 ; d) 7n + 13 và 2n + 4 ; e) 9n + 24 và 3n + 4 ; g) 18n + 3 và 21n + 7
Bài 1:Tính cả ước âm thì là số `12`
Bài 2:
Gọi `ƯCLN(7n+10,5n+7)=d(d>0)(d in N)`
`=>7n+10 vdots d,5n+7 vdots d`
`=>35n+50 vdots d,35n+49 vdots d`
`=>1 vdots d`
`=>d=1`
`=>` 7n+10 và 5n+7 là 2 số nguyên tố cùng nhau.
Các phần còn lại thì bạn làm tương tự câu a.
Thanks,tui cũng đang mắc ở bài 2
Tìm ƯCLN của hai số sau:
a. 7n+3 và 8n-1
b. 4n+3 và 2n+3
c.9n+24 và 3n+4
d.7n+13 và 2n+4
e.18n+13 và 21n+7
CMR các cặp số sau là snt
a) 4n + 4 và 2n + 3
b)7n + 13 và 2n + 4
c)9n + 24 và 3n + 4
d)18n + 3 và 21n + 7