Giá trị nhỏ nhất của C=(giá trị tuyệt đối của 2x + 2^2016) + 5 * 10^2
Giá trị nhỏ nhất của
C=/2x+22016\+5.102
Chú ý:/ và \ là giá trị tuyệt đối
B= 3^2.10 - giá trị tuyệt đối x +2 ^3 Giá trị lớn nhất của B là
C= ( giá trị tuyệt đối 2x + 2^2016 ) +5.10^2
Tìm giá trị ớn nhất của A=5-trị tuyệt dối của x+1
Tìm giá trị ớn nhất của C=2x+3/x-1(n thuộc N*)
Tìm giá trị nhỏ nhất của B=(trị tuyệt đối x-1 )+(trị tuyệt đối y+2)+3
mình ko biết nhưng các bạn k mình nha mình đang âm
Vì | x + 1 |>0 hoặc =0
Suy ra : 5 - | x + 1 | < hoặc = 5
Suy ra : A < hoặc = 0
Suy ra : Amax = 5 khi & chỉ khi x + 1 = 0
suy ra : x = -1
Vậy Amax = 5 khi & chỉ khi x = -1
Tìm giá trị nhỏ nhất của M=|5-x|+3(|: giá trị tuyệt đối)
Tìm giá trị lớn nhất của P=12-(3-2x)2
tìm giá trị nhỏ nhất của biểu thức:
a,M=giá trị tuyệt đối của x-2015 cộng giá trị tuyệt đối của x-2016
b,tìm các số a,b,c biết a.b=2,b.c=3,a.c=54
giẢI CÁC phương trình sau:
a)giá trị tuyệt đối của 3x=x+8
b)giá trịh tuyệt đối của -2x=4x+18
c)giá trị tuyệt đối của x-5=3x
d)giá trị tuyệt đối của x+2=2x-10
Với giá trị nào của x và y thì B = ( x + 5 )2016+ / y + 1/2017 - 10 có giá trị nhỏ nhất .Tìm giá trị này.
dấu / là dấu giá trị tuyệt đối
Vì (x+5)^2016 và |y+1|^2017 đều >= 0 => B >= 0+0-10 = -10
Dấu "=" xảy ra <=> x+5=0 và y+1=0 <=> x=-5 và y=-1
Vậy GTNN của B = -10 <=> x=-5 và y=-1
Tk mk nha
tìm x
a, giá trị tuyệt đối của tổng 3x+4= 2 nhân giá trị tuyệt đối của hiệu 2x-9
b, 8x- giá trị tuyệt đối của tổng 4x+1= x+2
c, giá trị tuyệt đối của hiệu 17x-5- giá trị tuyệt đối của hiệu 17x+5=0
d, giá trị tuyệt đối của hiệu x-1=2x-5
1.Tìm nghiệm nguyên dương của phương trình x+y+z=xyz
2.tìm giá trị nhỏ nhất của biểu thức A=giá trị tuyệt đối của 2x+2 cộng với giá trị tuyệt đối của 2x-2013
Không làm mất tính tổng quát, giả sử \(0< x\le y\le z\)
=> \(x+y+z\le3z\Leftrightarrow xyz\le3z\Leftrightarrow xy\le3\)
Mà x;y;z là các số nguyên dương => \(xy\in\left\{1;2;3\right\}\)
Ta xét các trường hợp:
TH1: \(xy=1\Leftrightarrow\hept{\begin{cases}x=1\\y=1\end{cases}}\Leftrightarrow2+z=z\Leftrightarrow2=0\) (vô lý!)
TH2: \(xy=2\Leftrightarrow\hept{\begin{cases}x=1\\y=2\end{cases}}\Leftrightarrow z=3\) (thỏa mãn)
TH3: \(xy=3\Leftrightarrow\hept{\begin{cases}x=1\\y=3\end{cases}}\Leftrightarrow z=2\) (thỏa mãn)
Vậy (x;y;z) là các hoán vị của (1;2;3)
\(A=\left|2x+2\right|+\left|2x-2013\right|=\left|2x+2\right|+\left|2013-2x\right|\)
Áp dụng bất đẳng thức \(\left|a\right|+\left|b\right|\ge\left|a+b\right|\)với \(ab\ge0\)
=>\(A=\left|2x+2\right|+\left|2013-2x\right|\ge\left|2x+2+2013-2x\right|=2015\)
với \(\left(2x+2\right)\left(2013-2x\right)\ge0\)
=>\(A_{min}=2015\) với \(-0,5\le x\le1006,5\)