Những câu hỏi liên quan
KT
Xem chi tiết
VL
30 tháng 7 2016 lúc 12:14

Ta có:

\(A=3+3^2+3^3+3^4+...+3^{99}\)

   \(=\left(3+3^2+3^3\right)+\left(3^4+3^5+3^6\right)+...+\left(3^{97}+3^{98}+3^{99}\right)\)

   \(=13\left(1+3+3^2\right)+13\left(3^3+3^4+3^5\right)+...+13\left(3^{96}+3^{97}+3^{98}\right)\)

   \(=13\left(1+3+3^2+3^3+3^4+3^5+...+3^{98}\right)\)

\(\Rightarrow\)A chia hết cho 13

Bình luận (0)
TA
Xem chi tiết
TT
1 tháng 10 2017 lúc 12:53

Bài 1 : \(A=1+3+3^2+...+3^{31}\)

a. \(A=\left(1+3+3^2\right)+...+3^9.\left(1.3.3^2\right)\)

\(\Rightarrow A=13+3^9.13\)

\(\Rightarrow A=13.\left(1+...+3^9\right)\)

\(\Rightarrow A⋮13\)

b. \(A=\left(1+3+3^2+3^3\right)+...+3^8.\left(1+3+3^2+3^3\right)\)

\(\Rightarrow A=40+...+3^8.40\)

\(\Rightarrow A=40.\left(1+...+3^8\right)\)

\(\Rightarrow A⋮40\)

Bình luận (0)
TP
1 tháng 10 2017 lúc 20:46

Bài 2:

Ta có: \(C=3+3^2+3^4+...+3^{100}\)

\(\Rightarrow C=(3+3^2+3^3+3^4)+...+(3^{97}+3^{98}+3^{99}+3^{100})\)

\(\Rightarrow3.(1+3+3^2+3^3)+...+3^{97}.(1+3+3^2+3^3)\)

\(\Rightarrow3.40+...+3^{97}.40\)

Vì tất cả các số hạng của biểu thức C đều chia hết cho 40

\(\Rightarrow C⋮40\)

Vậy \(C⋮40\)

Bình luận (0)
HT
Xem chi tiết
NT
28 tháng 7 2018 lúc 15:54

tích mình đi

ai tích mình

mình ko tích lại đâu

thanks

Bình luận (0)
HT
28 tháng 7 2018 lúc 15:59

ko trả lời m ko k

Bình luận (0)
DK
Xem chi tiết
LL
26 tháng 12 2018 lúc 9:28

A=(13+132)+(133+134)+.......................+(1399+13100)

A=1.(13+132)+132.(13+132)+..............+1398.(13+132)

A=1.182+132.182+..........................+1398.182

A+182.(1+132+..............+1398) Chia hết cho 182

--> A chia hết cho 182

Bình luận (0)
NL
Xem chi tiết
NL
27 tháng 7 2016 lúc 9:09

Bài 4 :

Thay x=y+5 , ta có :

a ) ( y+5)*(y5+2)+y*(y-2)-2y*(y+5)+65

=(y+5)*(y+7)+y^2-2y-2y^2-10y+65

=y^2+7y+5y+35-y^2-2y-2y^2-10y+65

= 100

Bài 5 :

A = 15x-23y

B = 2x-3y

Ta có : A-B

= ( 15x -23y)-(2x-3y)

=15x-23y-2x-3y

=13x-26y

=13x*(x-2y) chia hết cho 13 

=> Nếu A chia hết cho 13 thì B chia hết cho 13 và ngược lại 

Bình luận (0)
TM
Xem chi tiết
TA
Xem chi tiết
TH
1 tháng 10 2017 lúc 14:41

Vì 13 là lẻ \(\Rightarrow\) 13, 132, 133, 134, 135, 136 là lẻ.

Mà lẻ + lẻ + lẻ + lẻ + lẻ + lẻ = chẵn nên 13 + 132 + 133 + 134 + 135 + 136 là chẵn. \(\Rightarrow\) 13 + 132 + 133 + 134 + 135 + 136 \(⋮\) 2

\(\Rightarrow\) ĐPCM

Bình luận (0)
NH
Xem chi tiết
KD
Xem chi tiết
KD
28 tháng 1 2016 lúc 18:43

giải bằng phép đồng dư giúp mk

Bình luận (0)