Cho a,b,c là các số thực thỏa:|a|<1;|a-c|<1008;|b-1|<1008.CMR: |ab-c|<2016
Cho các số thực a,b,c thỏa mãn a + b, b + c, c + a đều là các số hữu tỉ. Chứng minh rằng a, b, c là các số hữu tỉ
a + b, b + c, c + a đều là các số hữu tỉ
=> 2(a + b + c) là số hữu tỉ
=> a + b + c là số hữu tỉ (do khi 1 số hữu tỉ chia cho 2 sẽ nhận đc 1 số hữu tỉ)
=> a + b + c - (a + b) = c là số hữu tỉ; a + b + c - (b + c) = a là số hữu tỉ; a + b + c - (c + a) = b là số hữu tỉ
=> a, b, c đều là số hữu tỉ (đpcm)
Các Ctv hoặc các giáo viên helpp ạ
Cho a,b,c là số thực dương không âm thỏa mãn
Cho a,b,c là số thực dương không âm thỏa mãn \(a+b+c=1\) . Chứng minh rằng :
\(\dfrac{1}{a^2+b^2}+\dfrac{1}{b^2+c^2}+\dfrac{1}{c^2+a^2}>10\)
Cho a, b, c, d là các số thực thỏa mãn ( a ; b ) ⊂ ( c ; d ) .
So sánh các số a, b, c, d ta có:
A. a < c ≤ b < d
B. c < a ≤ d < b
C. a < c < d < b
D. c ≤ a < b ≤ d
Để ( a ; b ) ⊂ ( c ; d ) thì c ≤ a < b ≤ d
Đáp án D
Cho số thực x thỏa mãn log x = 1 2 log 3 a - 2 log b + 3 log c (a,b,c là các số thực dương). Hãy biểu diễn x theo a, b, c.
A. x = c 3 3 a b 2
B. x = 3 a b 2 c 3
C. x = 3 a c b 2
D. x = 3 a c 3 b 2
1.cho a, b,c là các số thực dương thỏa mãn a^3 /(a^2+b^2) + b^3/(b^2+c^2) + c^3/(c^2+a^2) >= (a+b+c)/2
2.cho a, b,c là các số thực dương thỏa mãn (a^3 +b^3+c^3)/2abc + (a^2+ b^2)/c^2 + (b^2+c^2)/(a^2+bc) + (c^2+a^2)/b^2+ac) >= 9/2
cho x;y;z là các số nguyên dương và x+y+z là số lẻ, các số thực a,b,c thỏa mãn: a-b/x=b-c/y=a-c/z.cmr: a=b=c
a-b+b-x-a+c/x+y-z=0/x+y-z=0
suy ra a-b=0 suy ra a=b
b-c=0 suy ra b=c
Câu 1: xy + x - y = 4
<=> (xy + x) - (y+ 1) = 3
<=> x(y+1) - (y + 1) = 3 <=> (y + 1) (x - 1) = 3
Theo bài ra cần tìm các số nguyên dương x, y =>
Xét các trường hợp y + 1 nguyên dương và x -1 nguyên dương.
Mà 3 = 1 x 3 => Chỉ có thể xảy ra các trường hợp sau:
* TH1: y + 1 = 1; x - 1 = 3 => y = 0; x = 4 (loại vì y = 0)
* TH2: y + 1 = 3; x -1 = 1 => y = 2; x = 2 (t/m)
Vậy x = y = 2.
Câu 2: Ta có: (a - b)/x = (b-c)/y = (c-a)/z
=(a-b + b -c + c - a) (x + y + z) = 0 Vì x; y
; z nguyên dương => a-b =0; b - c = 0; c- a =0 => a = b = c
cho a,b,c là các số thực dương thỏa mãn a+b+c=1
cm: căn(a+b)+căn(b+c)+căn(c+a)<= căn6
đặt \(A=\sqrt{a+b}+\sqrt{b+c}+\sqrt{c+a}\)
\(=>A^2=\left(\sqrt{a+b}+\sqrt{b+c}+\sqrt{c+a}\right)^2\)
\(=>A^2\le\left[\left(\sqrt{a+b}\right)^2+\left(\sqrt{b+c}\right)^2+\left(\sqrt{c+a}\right)^2\right].3\)
\(=>A^2\le\left[2\left(a+b+c\right)\right]3=2.3=6\)
\(=>A\le\sqrt{6}\left(dpcm\right)\)
dấu"=" xảy ra<=>a=b=c=1/3
Ta có:\(\left(\sqrt{a+b}+\sqrt{b+c}+\sqrt{c+a}\right)^2=\left(1.\sqrt{a+b}+1.\sqrt{b+c}+1.\sqrt{c+a}\right)^2\)
\(\le\left(1+1+1\right)\left(a+b+b+c+c+a\right)=3.2=6\)
\(\Rightarrow\sqrt{a+b}+\sqrt{b+c}+\sqrt{c+a}\le\sqrt{6}\)
Dấu "=" xảy ra <=> a=b=c=1/3
cho a,b,c là các số thực thỏa mãn a+b+c=1
chứng minh a^2+b^2+c^2>=1/3
áp dụng BĐT Bunhiacopxky
\(=>\left(a+b+c\right)^2\le3\left(a^2+b^2+c^2\right)\)
\(=>3\left(a^2+b^2+c^2\right)\ge1^2\)
\(=>a^2+b^2+c^2\ge\dfrac{1}{3}\left(đpcm\right)\)
dấu"=" xảy ra<=>\(a=b=c=\dfrac{1}{3}\)
cho a,b,c,d là các số thực dương thỏa mãn a/b<
cho x,y,z là các số nguyên dương và x +y+z là số lẻ, các số thực a,b,c thỏa mãn (a-b)/x=(b-c)/y= (a-c)/z chứng minh rằng a= b= c
Cho x,y,z là các số nguyên tố khác 2 và các số thực a,b,c thỏa mãn dãy tỉ số bằng nhau a-b/x=b-c/y=a-c/z.CMR a=b=c
Dễ thế mà chẳng ai làm được..