Tính \(1+\frac{1}{3}+\frac{1}{6}+\frac{1}{10}+\frac{1}{15}+......+\frac{1}{120}\)
Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6
Tính \(A=1+\frac{1}{3}+\frac{1}{6}+\frac{1}{10}+\frac{1}{15}+......+\frac{1}{120}\)
TÍNH NHANH
a,\(\frac{-2}{5}+\frac{3}{10}+\frac{-3}{5}\)
b, \(9.\left(\frac{-1}{3}\right)^3+\frac{1}{6}.\sqrt{4}\)
c, \(15\frac{1}{4}:\frac{5}{7}-25\frac{1}{4}:\frac{5}{7}\)
a) \(\frac{-2}{5}+\frac{3}{10}+\frac{-3}{5}\)
\(=\left[\left(-\frac{2}{5}\right)+\left(-\frac{3}{5}\right)\right]+\frac{3}{10}\)
\(=\left(-1\right)+\frac{3}{10}\)
\(=-\frac{7}{10}.\)
c) \(15\frac{1}{4}:\frac{5}{7}-25\frac{1}{4}:\frac{5}{7}\)
\(=\frac{61}{4}:\frac{5}{7}-\frac{101}{4}:\frac{5}{7}\)
\(=\left(\frac{61}{4}-\frac{101}{4}\right):\frac{5}{7}\)
\(=\left(-10\right):\frac{5}{7}\)
\(=-14.\)
Chúc bạn học tốt!
Thực hiện phép tính:
\(\left(1-\frac{1}{3}\right)\left(1-\frac{1}{6}\right)\left(1-\frac{1}{10}\right)\left(1-\frac{1}{15}\right)...\left(1-\frac{1}{780}\right)\)
Giúp mình nhé, xong trước ngày 13/2
Ta có: \(\left(1-\frac{1}{3}\right)\left(1-\frac{1}{6}\right)\left(1-\frac{1}{10}\right)....\left(1-\frac{1}{780}\right)\)
\(=\frac{2}{3}.\frac{5}{6}...\frac{779}{780}\)
\(=\frac{4}{6}.\frac{10}{12}....\frac{1558}{1560}\)
\(=\frac{1.4.2.5....38.41}{2.3.3.4....39.40}=\frac{\left(1.2.3..38\right)\left(4.5...41\right)}{\left(2.3.4...39\right)\left(3...40\right)}=\frac{41}{39.3}=\frac{41}{117}\)
\(\left(1-\frac{1}{3}\right)\left(1-\frac{1}{6}\right)\left(1-\frac{1}{10}\right)\left(1-\frac{1}{15}\right)........\left(1-\frac{1}{780}\right)\)
\(=\frac{2}{3}.\frac{5}{6}.\frac{9}{10}.\frac{14}{15}........\frac{779}{780}\)
\(=\frac{4}{6}.\frac{10}{12}\frac{18}{20}.\frac{28}{30}.........\frac{1558}{1560}\)
\(=\frac{1.4}{2.3}.\frac{2.5}{3.4}.\frac{3.6}{4.5}.\frac{4.7}{5.6}...............\frac{38.41}{39.40}\)
\(=\frac{\left(1.2.3.4......38\right)\left(4.5.6.7..........41\right)}{\left(2.3.4.5.........39\right)\left(3.4.5.6.........40\right)}\)
\(=\frac{1.41}{39.3}\)
\(=\frac{41}{117}\)
Vậy \(\left(1-\frac{1}{3}\right)\left(1-\frac{1}{6}\right)\left(1-\frac{1}{10}\right)\left(1-\frac{1}{15}\right)........\left(1-\frac{1}{780}\right)=\frac{41}{117}\)
\(\left(1-\frac{1}{3}\right)\left(1-\frac{1}{6}\right)\left(1-\frac{1}{10}\right)\left(1-\frac{1}{15}\right)...\left(1-\frac{1}{780}\right)\)
\(=\frac{2}{3}.\frac{5}{6}.\frac{9}{10}...\frac{779}{780}=\frac{4}{6}.\frac{10}{12}.\frac{18}{20}...\frac{1558}{1560}\)
\(=\frac{1.4}{2.3}.\frac{2.5}{3.4}.\frac{3.6}{4.5}...\frac{38.41}{39.40}\)
\(=\frac{\left(1.2.3...38\right)\left(4.5.6...61\right)}{\left(2.3.4...39\right)\left(3.4.5...40\right)}=\frac{1.41}{39.3}=\frac{41}{117}\)
\(\frac{\left(\frac{1}{6}+\frac{1}{10}+\frac{1}{15}\right)\div\left(\frac{1}{6}+\frac{1}{10}-\frac{1}{15}\right)}{\left(\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+\frac{1}{5}\right)\div\left(\frac{1}{4}-\frac{1}{6}\right)}\)
Tính giá trị của biểu thức:
\(\frac{\left(\frac{1}{6}+\frac{1}{10}+\frac{1}{15}\right):\left(\frac{1}{6}+\frac{1}{10}-\frac{1}{15}\right)}{\left(\frac{1}{2}-\frac{1}{3}+\frac{1}{4}-\frac{1}{5}\right):\left(\frac{1}{4}-\frac{1}{6}\right)}\)
Câu 1
Tính giá tri biểu thức
A=\(\frac{\frac{7}{12}+\frac{5}{6}-1}{5-\frac{3}{4}+\frac{1}{3}}\)
B= \(1+3^1+3^2+3^3+...+3^{99}\)
C= \(1+\frac{1}{3}+\frac{1}{6}+\frac{1}{10}+...+\frac{2}{x\left(x+1\right)}\)(với x\(\in\)N)
D= \(\frac{9}{8}.\frac{16}{15}.\frac{25}{24}.....\frac{8100}{8099}\)
A em tự tính nhé
b) B = 1+ 3 + 32+...+399
3B = 3+ 32+33+...+3100
do đó 3B-B= (3+32+33+...+3100) - ( 1+3+32+...+399)
2B= 3100-1
B= (3100-1) : 2
c) \(C=1+\frac{1}{3}+\frac{1}{6}+...+\frac{2}{x.\left(x+1\right)}\)
\(C=1+\frac{2}{6}+\frac{2}{12}+\frac{2}{20}+...+\frac{2}{x.\left(x+1\right)}\)
\(C=1+\frac{1}{2}.\left(\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+...+\frac{1}{x.\left(x+1\right)}\right)\)
\(C=1+\frac{1}{2}.\left(\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{x.\left(x+1\right)}\right)\)
\(C=1+\frac{1}{2}.\left(\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{x}-\frac{1}{x+1}\right)\)
\(C=1+\frac{1}{2}.\left(\frac{1}{2}-\frac{1}{x+1}\right)\)
Phần c thế này thôi vì ko có giá trị x cụ thể .
d) \(D=\frac{9}{8}.\frac{16}{15}.\frac{25}{24}.....\frac{8100}{8099}\)
\(D=\frac{9.16.25....8100}{8.15.24....8099}\)
\(D=\frac{3.3.4.4.5.5....90.90}{2.4.3.5.4.6.....89.91}\)
\(D=\frac{\left(3.4.5...90\right).\left(3.4.5...90\right)}{\left(2.3.5...89\right).\left(4.5.6...91\right)}\)
\(D=\frac{3.4.5...90}{2.3.4...89}.\frac{3.4.5...90}{4.5.6...91}\)
\(D=\frac{90}{2}.\frac{3}{91}\)
\(D=45.\frac{3}{91}=\frac{135}{91}\)
Tính tổng:
a) \(A=\frac{1}{10}+\frac{1}{15}+\frac{1}{21}+...+\frac{1}{120}\)
b) \(B=1+\frac{1}{3}+\frac{1}{6}+...+\frac{1}{1225}\)
Giúp mik nha, mik đang cần gấp
a)A=1/10+1/15+...+1/120
=2(1/20+1/30+...+1/240)
=2(1/4*5+1/5*6+...+1/15*16)
=2*(1/4-1/5+1/5-1/6+...+1/15-1/16)
=2*[(1/4-1/16)+(1/5-1/5)+...+(1/15-1/15)]
=2*[(4/16-1/16)+0+...+0]
=2*3/16=3/8
b) B=1+1/3+1/6+...+1/1225
=2(1/2+1/6+1/12+...+1/2450)
=2(1/1*2+1/2*3+...+1/49*50)
=2*[1-1/2+1/2-1/3+...+1/49-1/50]
=2*[(1-1/50)+(1/2-1/2)+...+(1/49-1/49)]
=2*[(50/50-1/50)+0+...+0]
=2*49/50=49/25
a,\(\frac{1}{2}A=\frac{1}{2}\left(\frac{1}{10}+\frac{1}{15}+\frac{1}{21}+...+\frac{1}{120}\right)\)
\(\frac{1}{2}A=\frac{1}{20}+\frac{1}{30}+\frac{1}{42}+...+\frac{1}{240}\)
\(\frac{1}{2}A=\frac{1}{4.5}+\frac{1}{5.6}+\frac{1}{6.7}+...+\frac{1}{15.16}\)
\(\frac{1}{2}A=\frac{1}{4}-\frac{1}{5}+\frac{1}{5}-\frac{1}{6}+\frac{1}{6}-\frac{1}{7}+...+\frac{1}{15}-\frac{1}{16}\)
\(\frac{1}{2}A=\frac{1}{4}-\frac{1}{16}\)\(\frac{1}{2}A=\frac{3}{16}\)suy ra \(A=\frac{3}{16}:\frac{1}{2}=\frac{3}{8}\)
B thì cậu có thể làm nhiều cách
Tính giá trị biểu thức :
\(\frac{6:\frac{3}{5}-1\frac{1}{6}\cdot\frac{6}{7}}{4\frac{1}{5}\cdot\frac{10}{11}+5\frac{2}{11}}\)
\(\frac{6:\frac{3}{5}-1\frac{1}{6}.\frac{6}{7}}{4\frac{1}{5}.\frac{10}{11}+5\frac{2}{11}}=\frac{10-\frac{7}{6}.\frac{6}{7}}{\frac{21}{5}.\frac{10}{11}+\frac{57}{11}}=\frac{10-1}{\frac{42}{11}+\frac{57}{11}}=\frac{9}{9}=1\)