Những câu hỏi liên quan
CN
Xem chi tiết
TT
Xem chi tiết
DP
Xem chi tiết
DH
7 tháng 10 2017 lúc 19:22

\(a^3+b^3+c^3=3abc\Leftrightarrow a^3+b^3+c^3-3abc=0\)

\(\Leftrightarrow\left(a+b+c\right)\left(a^2+b^2+c^2-ab-ac-bc\right)=0\)

\(\Leftrightarrow\frac{1}{2}\left(a+b+c\right)\left[\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2\right]=0\)

\(\Rightarrow\orbr{\begin{cases}a+b+c=0\\\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2=0\end{cases}\Rightarrow\orbr{\begin{cases}a+b+c=0\\a=b=c\end{cases}}}\)

Với \(a+b+c=0\) thì \(\hept{\begin{cases}a+b=-c\\a+c=-b\\b+c=-a\end{cases}}\)

\(\Rightarrow A=\frac{a+b}{b}.\frac{b+c}{c}.\frac{a+c}{a}=\frac{-c}{b}.\frac{-a}{c}.\frac{-b}{a}=-1\)

Với \(a=b=c\) thì :

\(A=\left(1+\frac{a}{a}\right)\left(1+\frac{b}{b}\right)\left(1+\frac{c}{c}\right)=2.2.2=8\)

Bình luận (0)
DN
Xem chi tiết
PQ
11 tháng 10 2019 lúc 18:08

Ta có: \(a^3+b^3+c^3=3abc\)

\(\Leftrightarrow\left(a+b\right)^3-3ab\left(a+b\right)+c^3-3abc=0\)

\(\Leftrightarrow\left[\left(a+b\right)^3+c^3\right]-3ab\left(a+b+c\right)=0\)

\(\Leftrightarrow\left(a+b+c\right)\left[\left(a+b\right)^2-\left(a+b\right)c+c^2-3ab\right]=0\)

\(\Leftrightarrow\left(a+b+c\right)\left(a^2+b^2+c^2-ab-bc-ca\right)=0\)

\(\Leftrightarrow\frac{1}{2}\left(a+b+c\right)\left(2a^2+2b^2+2c^2-2ab-2bc-2ca\right)=\)\(0\)

\(\Leftrightarrow\frac{1}{2}\left(a+b+c\right)\left[\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2\right]=0\)

\(\Leftrightarrow\left[{}\begin{matrix}a+b+c=0\\a=b=c\end{matrix}\right.\)

đến đây bạn tự thay vào tính P nhé P được \(2\) giá trị là \(-1\)hoặc\(8\)

Bình luận (0)
PL
Xem chi tiết
LF
22 tháng 10 2016 lúc 12:28

Câu 1:

Chứng minh a3+b3+c3=3abc thì a+b+c=0

\(a^3+b^3+c^3=3abc\Rightarrow a^3+b^3+c^3-3abc=0\)

\(\Rightarrow\left(a+b\right)^3-3a^2b-3ab^2+c^3-3abc=0\)

\(\Rightarrow\left[\left(a+b\right)^3+c^3\right]-3abc\left(a+b+c\right)=0\)

\(\Rightarrow\left(a+b+c\right)\left[\left(a+b\right)^2-\left(a+b\right)c+c^2\right]-3ab\left(a+b+c\right)=0\)

\(\Rightarrow0=0\) Đúng (Đpcm)

Chứng minh a3+b3+c3=3abc thì a=b=c

​Áp dụng Bđt Cô si 3 số ta có:

\(a^3+b^3+c^3\ge3\sqrt[3]{a^3b^3c^3}=3abc\)

Dấu = khi a=b=c (Đpcm)

 

 

 

Bình luận (0)
LF
22 tháng 10 2016 lúc 12:49

Câu 2

Từ \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=0\Rightarrow\frac{1}{a^3}+\frac{1}{b^3}+\frac{1}{c^3}=3\cdot\frac{1}{abc}\)

Ta có:

\(\frac{ab}{c^2}+\frac{bc}{a^2}+\frac{ac}{b^2}=\frac{abc}{c^3}+\frac{abc}{a^3}+\frac{abc}{b^3}\)

\(=abc\left(\frac{1}{a^3}+\frac{1}{b^3}+\frac{1}{c^3}\right)\)

\(=abc\cdot3\cdot\frac{1}{abc}=3\)

Bình luận (0)
LF
22 tháng 10 2016 lúc 12:55

\(a^3+b^3+c^3=3abc\)

\(\Leftrightarrow\left(a+b+c\right)\left(a^2+b^2+c^2-ab-bc-ac\right)=0\)

\(\Leftrightarrow\left[\begin{array}{nghiempt}a+b+c=0\\a^2+b^2+c^2-ab-bc-ac=0\end{array}\right.\)

Xét \(a+b+c=0\)\(\Rightarrow\begin{cases}a=-\left(b+c\right)\\b=-\left(a+c\right)\\c=-\left(a+b\right)\end{cases}\)

\(\Rightarrow A=\left(1-\frac{b+c}{b}\right)\left(1-\frac{a+c}{c}\right)\left(1-\frac{a+b}{a}\right)\)

\(=\left(1-1-\frac{c}{b}\right)\left(1-1-\frac{a}{c}\right)\left(1-1-\frac{b}{a}\right)\)

\(=\left(-\frac{c}{b}\right)\left(-\frac{a}{c}\right)\left(-\frac{b}{a}\right)=-1\)

Xét \(a^2+b^2+c^2-ab-bc-ca=0\)

\(\Leftrightarrow\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2=0\)

\(\Leftrightarrow a-b=b-c=c-a=0\Leftrightarrow a=b=c\)

\(\Leftrightarrow A=\left(1+1\right)\left(1+1\right)\left(1+1\right)=8\)

 

Bình luận (0)
LA
Xem chi tiết
DN
Xem chi tiết
VM
Xem chi tiết
TT
19 tháng 5 2015 lúc 20:26

a+ b3 + c3 = 3abc

=> a3 + b3 +3a2b+ 3ab2 +c3-3abc-3a2b-3ab2=0

=>((a+b)3+c3)-3ab(a+b+c)=0

=>(a+b+c)((a+b)2-(a+b)c+c2)-3ab(a+b+c)=0

=>(a+b+c)(a2+2ab+b2-ac-bc+c2-3ab)=0

=>(a+b+c)(a2+b2+c2-ab-ac-bc)=0

*)TH1: a+b+c=0

          => c=-(a+b)

               b=-(a+c)

               a=-(b+c)

=>M=\(\left(1-\frac{b+c}{b}\right)\left(1-\frac{a+c}{c}\right)\left(1-\frac{a+b}{a}\right)\)

=>M=\(\left(-\frac{c}{b}\right)\left(-\frac{a}{c}\right)\left(-\frac{b}{a}\right)\)=-1

*)TH2: a2+b2+c2-ac-bc-ab=0

  =>2(a2+b2+c2-ac-bc-ab)=0

 =>2a2+2b2+2c2-2ac-2bc-2ab=0

=>(a-b)2+(b-c)2+(c-a)2=0

=>a=b=c

=>M=8

               Vậy M=8 hoặc M =-1

             chọn đúng giúp mình!

Bình luận (0)
H24
19 tháng 5 2015 lúc 20:13

khó đấy , mình mới học lớp 6 thôi

Bình luận (0)
DT
Xem chi tiết
H24
19 tháng 3 2019 lúc 5:27

Bài 1

a³+b³+c³ = 3abc⇒a³+b³+c³ − 3abc=0

=> a = b = c

 Và a + b + c = 0

Còn bài 2 gửi sau nha

Bình luận (0)
H24
19 tháng 3 2019 lúc 5:35

Bài 2 khó quá

Bình luận (0)
H24
19 tháng 3 2019 lúc 8:55

Ta có: \(a^3+b^3+c^3-3abc=0\)

\(\Leftrightarrow\left(a+b+c\right)\left(a^2+b^2+c^2-ab-bc-ca\right)=0\)

Suy ra \(\frac{1}{2}\left(a+b+c\right)\left[\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2\right]=0\)

Suy ra \(a+b+c=0\) hoặc a = b = c.

b) Với a + b + c = 0 thì \(n=\frac{abc}{\left(a+b\right)\left(b+c\right)\left(c+a\right)}=\frac{abc}{-abc}=-1\)

Với a = b = c  thì \(n=\frac{a^3}{\left(2a\right)^3}=\frac{a^3}{8a^3}=\frac{1}{8}\)

Vậy ....

Bình luận (0)
DT
Xem chi tiết
DH
14 tháng 11 2019 lúc 10:55

Hỏi đáp Toán

Bình luận (0)
 Khách vãng lai đã xóa