chứng minh rằng số 13!+910_1 chia hết cho cả 2 và 5
Chứng minh rằng 9^13 + 1 chia hết cho cả 2 và 5
913=...9
=>913+1=...0
=>913+1 chia het cho ca 2 va 5
913+1=...0 chia hết cho 2 và 5
Vậy 913+1 chia hết cho 2 và 5
ai tick mik đến 190 mik tick cho cả đời
Chứng minh rằng; 13 dây thừa + 910 - 1 chia hết cho cả 2 và 5
Chứng minh rằng tồn tại vô số số tự nhiên để 4n^2+1 chia hết cho 5 và chia hết cho 13.
Câu 1: Chứng minh rằng nếu số tự nhiên n chia hết cho 11 dư 4 thì n2 chia hết cho 11 dư 5.
Câu 2: Chứng minh rằng nếu số tự nhiên n chia cho 13 dư 7 thì n2-10 chia hết cho 13.
Bg
C1: Ta có: n chia hết cho 11 dư 4 (n \(\inℕ\))
=> n = 11k + 4 (với k \(\inℕ\))
=> n2 = (11k)2 + 88k + 42
=> n2 = (11k)2 + 88k + 16
Vì (11k)2 \(⋮\)11, 88k \(⋮\)11 và 16 chia 11 dư 5
=> n2 chia 11 dư 5
=> ĐPCM
C2: Ta có: n = 13x + 7 (với x \(\inℕ\))
=> n2 - 10 = (13x)2 + 14.13x + 72 - 10
=> n2 - 10 = (13x)2 + 14.13x + 39
Vì (13x)2 \(⋮\)13, 14.13x \(⋮\)13 và 39 chia 13 nên n2 - 10 = (13x)2 + 14.13x + 39 \(⋮\)13
=> n2 - 10 \(⋮\)13
=> ĐPCM
Bài 1: Chứng minh rằng 2002n -138n-1 chia hết cho 207 với mọi số tự nhiên n
Bài 2: Cho số tự nhiên n và n-1 không chia hết cho 4. CHứng minh rằng 7n + 2 không thể là số chính phương
Bài 3: Chứng minh rằng dãy 2n - 3 ( n>1) có vô số số hạng chia hết cho 5 và vô số số hạng chia hết cho 13 nhưng không có số hạng nào chia hết cho 65.
a)cho a, b là các số nguyên, chứng minh rằng nếu a chia cho 13 dư 2 và b chia cho 13 dư 3 thì a^2 + b^2 chia hết cho 13
b) Cho a,b là các số nguyên . Chứng minh rằng nếu a chia cho 19 dư 3 , b chia cho 19 dư 2 thì a^2 + b^2 + ab chia hết cho 19
c) chứng minh rằng nếu tổng của hai số nguyên chia hết cho 3 thì tổng các lập phương của chúng chia hết cho 3
huk mìk như pn thuj có 6 đề hsg đây nè
a/ Chứng minh rằng: 316- 1 chia hết cho cả 2 và 5
b/ dùng 3 chữ số; 1,5,0 để viết các số có 3 chữ số chia hết cho cả 2 và 5
Nếu Chia hết cho 10 thì chia hết cho cả 2 và 5
Ta có: 316 = (32)8 = 98
Ta có: nếu 9chẵn tận cùng là 1
=> 98 = (..........1)
=> 98 - 1 = (.......1 - 1)
98 = (............0) nên chia hết cho 10
Vậy 316 chia hết cho 10
1. Chứng minh rằng với mọi a;b thuộc N:
a, 4a +b chia hết cho 13 <=> a+10b chia hết cho 13
b, 5a +2b chia hết cho 17 <=> a+4b chia hết cho 17
c, a +2b chia hết cho 5 <=> 3a-ab chia hết cho 5
2. Chứng minh rằng :
19952 + 4.1995 +5 không chia hết cho 8.
3. Một số có 3 chữ số chia hết cho 12 và chữ số hàng trăm = chữ số hàng chục. Chứng minh tổng 3 chữ số chia hết cho 12.
GIẢI RA NHÉ. MK CẦN GẤP. MAI MK PHẢI NỘP RỒI.
Câu 1: Chứng minh rằng nếu số tự nhiên n chia hết cho 11 dư 4 thì n^2 chia hết cho 11 dư 5.
Câu 2: Chứng minh rằng nếu số tự nhiên n chia cho 13 dư 7 thì n^2 - 10 chia hết cho 13.
Câu 1:
Ta có:
\(n=11k+4\)
\(\Rightarrow n^2=\left(11k+4\right)^2=121k^2+88k+16\)
Vì \(121k^2\) chia hết cho 11; \(88k\) chia hết cho 11 và 16 chia cho 11 dư 5 nên
\(121k^2+88k+16\) chia cho 11 dư 5
Do đó \(n^2\) chia cho 11 dư 5.
Câu 2:
Ta có:
\(n=13k+7\)
\(\Rightarrow n^2-10=\left(13k+7\right)^2-10\)
\(=169k^2+182k+49-10=169k^2+182k+39\)
Vì \(169k^2;182k;39\) chia hết cho 13 nên \(169k^2+182k+39\) chia hết cho 13.
Do đó \(n^2-10\) chia hết cho 13.
Chúc bạn học tốt!!!