Chứng tỏ rằng:
a)Nếu x-y>0 thì x>y
b)Nếu x>y thì x-y>0
Cho x,y ∈ Z. Hãy chứng tỏ rằng:
a)Nếu x-y > 0 thì x > y;
b)Nếu x > y thì x-y > 0.
giúp mk với nha.hôm nay mình cần gấp!!!!!
a.
- Áp dụng quy tắc chuyển vế ta có:
\(x-y>0\)
\(\Leftrightarrow x>0+y\)
\(\Leftrightarrow x>y\) (đpcm)
b.
- Áp dụng quy tắc chuyển vế, ta có:
\(x>y\)
\(\Leftrightarrow x-y>0\) (đpcm)
p/s: theo mình mấy cái này chuyển vế là ra mà cần j cm đâu :v mà thoi làm như n cho dễ
a) Nếu x - y > 0 <=> x - y + y > 0 + y <=> x > y
b) Nếu x > y <=> x - y > y - y <=> x - y > 0
cho x , y thuộc Z.hãy chứng tỏ :
a) nếu x - y > 0 thì x > y
b)nếu x > y thì x - y = 0
a) Theo bài ra thì x-y>0 => x-y là số nguyên dương nên x=y+q (q là một số nguyên dương)
=> x>y.(dpcm)
b)
Thèo bài ra thì x>y suy ra x-y là một số nguyên dương nên x-y>0. (dpcm)
dpcm là điều phải chứng minh đó bạn
cho x,y thuộc Z. hãy chứng tỏ rằng :
a, nếu x-y > 0 thì x>y
b, nếu x>y thì x-y>0
a, vì x-y >0 nên x>0+y (chuyển -y từ vế trái sang vế phải) hay x>y
b, tương tự thôi (giống như phần a)
tick nha Ngọc ! (>^_^<)
Cho x , y thuộc Z. Hãy chứng tỏ rằng:
a) Nếu x - y > 0 thì x > y
b) Nếu x > y < 0 thì x- y > 0
a) Ta có:
x - y > 0
\(\Rightarrow\)x - y là số nguyên dương nên x = y + q ( q \(\in\)N* )
\(\Rightarrow\)x > y ( đpcm )
b tương tự nha
Hãy chứng tỏ rằng với x, y thuộc Z, ta có:
a) Nếu x > y thì x - y > 0
b) Nếu x - y > 0 thì x > y
1,Cho x và y là số nguyên . Hãy chứng tỏ rằng ;
a, nếu x-y>0 thì x>y
b, Nếu x>y thì x-y>0
nếu x-y>0 suy ra x-y là một số dương nên x= y=q ( q là một số dương)
Cho x, y ∈ Z. Hãy chứng tỏ rằng: Nếu x – y > 0 thì x > y
Áp dụng quy tắc chuyển vế trong bất đẳng thức ta có:
x – y > 0
x > 0 + y
hay x > y (điều phải chứng minh)
Cho x, y ∈ Z. Hãy chứng tỏ rằng: Nếu x > y thì x – y > 0
Áp dụng quy tắc chuyển vế trong bất đẳng thức ta có:
x > y
x > y + 0
x – y > 0 (điều phải chứng minh)
Cho x,y \(\in\)Z . Hãy chứng tỏ :
a) Nếu x-y>0 thì x>y
b) Nếu x>y thì x-y>0