cho a+4b chia hết cho 7. chứng minh rằng 3a+5b chia hết cho 7.
câu thứ 2
a - 5b chia hết cho 17 thì 10a-50b chia hết cho 17
10a-50b=10a+b-51b
51b chia hết cho 17 nên 10a+b chia hết cho 17
51a : 17
=> 51a - a + 5b : 17
=> 50a + 5b : 17
=> 5 ( 10a + b ) : 17
=> 10a + b : 17
Ta có : tích của 2 và 3 thì chia hết cho 17
=> 10a = 2 x 5 x a + b chia hết cho 17
Những câu dưới bạn tự làm nha
Cho a, b là các số nguyên thỏa mãn :(3a+5b).(a+4b) chia hết cho 7 . Chứng minh rằng tích đó chia hết cho 49
Cho 2a+5b chia hết cho 7. Chứng minh 3a+4b chia hết cho 7 với a và B là các số nguyên.?
2a+5b chia hết cho 7
=>6a+15b chia hết cho 7 (1)
ta có : nếu giả sử 3a+4b chia hết cho 7
=>6a+8b chia hết cho 7 (2)
Trừ (1) cho (2) ta được (6a+15b)-(6a+8b)=7b chia hết cho 7
Suy ra 3a+4b chia hết cho 7
Ta có:
( 9 a + 12 b ) - ( 2a + 5b ) = 7a + 7b = 7 (a + b ) chia hết cho 7
mà ( 2a + 5b ) chia hết cho 7
=> 9a + 12 b chia hết cho 7
=> 3 ( 3a + 4b ) chia hết cho 7
=> ( 3a + 4b ) chia hết cho 7
Xét hiệu : 3(2a+5b)-2(3a+4b)=6a+15b-6a-8b=7b
Ta có 7 chia hết cho 7 suy ra 7b chia hết cho 7
Suy ra 3(2a+5b)-2(3a+4b) chia hết cho 7. (1)
Lại có (2a+5b) chia hết cho 7 (bài cho)
suy ra 3(2a+5b) chia hết cho 7 (2)
Từ (1) và (2) suy ra 2(3a+4b) chia hết cho 7.
Mà (2,7)=1 suy ra 3a+4b chia hết cho 7
Vậy 2a+5b chia hết cho 7 thì 3a+4b chia hết cho 7 (a,b thuộc Z)
Cho a và b là các số nguyên.Chứng minh rằng
a) Nếu 100a+b chia hết cho 7 thì a+4b chia hết cho 7
b) Nếu 3a+4b chia hết cho 11 thì a+5b chia hêt cho 11
Bài làm:
a, Ta có: 98⋮7⇒98a⋮798⋮7⇒98a⋮7. Mà 100a+b⋮7⇒(100a+b)−98a⋮7⇒100a+b−98a⋮7100a+b⋮7⇒(100a+b)−98a⋮7⇒100a+b−98a⋮7
⇒2a+b⋮7⇒4.(2a+b)⋮7⇒8a+4b⋮7⇒2a+b⋮7⇒4.(2a+b)⋮7⇒8a+4b⋮7
Mặt khác 7a⋮7⇒8a+4b−7a⋮7⇒a+4b⋮77a⋮7⇒8a+4b−7a⋮7⇒a+4b⋮7 (đpcm)
Vậy...
b, Ta có: 3a+4b⋮11⇒4.(3a+4b)⋮11⇒12a+16b⋮113a+4b⋮11⇒4.(3a+4b)⋮11⇒12a+16b⋮11
Mà 11(a+b)⋮11⇒11a+11b⋮1111(a+b)⋮11⇒11a+11b⋮11
⇒(12a+16b)−(11a+11b)⋮11⇒12a+16b−11a−11b⋮11⇒(12a+16b)−(11a+11b)⋮11⇒12a+16b−11a−11b⋮11
⇒a+5b⋮11⇒a+5b⋮11 (đpcm)
Vậy...
cho 10a+5b chia hết cho 7 chứng minh rằng a+4b chia hết cho 7
a) Giải
Ta có:
a + 5b ⋮ 7 ⇒10(a + 5b) ⋮ 7 ⇒10a + 50b ⋮ 7
Vì 49 ⋮ 7 ⇒49b ⋮ 7
⇒10a + (50b - 49b) ⋮ 7
⇒10a + b ⋮ 7
Vậy 10a + b ⋮ 7
b) Giải
Ta có:
a + 4b ⋮ 13 ⇒10(a + 4b) ⋮ 13 ⇒10a + 40b ⋮ 13
VÌ 39 ⋮ 13 ⇒39b ⋮ 13
⇒10a + (40b - 39b) ⋮ 13
⇒10a + b ⋮ 13
Vậy 10a + b ⋮ 13
Cho a và b là 2 số nguyên.Chứng minh rằng:
a.Nếu 2a+b chia hết cho 13 và 5a-4b chia hết cho 13 thì a-6b chia hết cho 13
b.Nếu 100a+b chia hết cho 7 thì a+4b chia hết cho 7
c.Nếu 3a+4b chia hết cho 11 thì a+5b chia hết cho 11
ho a và b là 2 số nguyên.Chứng minh rằng:
a.Nếu 2a+b chia hết cho 13 và 5a-4b chia hết cho 13 thì a-6b chia hết cho 13
b.Nếu 100a+b chia hết cho 7 thì a+4b chia hết cho 7
c.Nếu 3a+4b chia hết cho 11 thì a+5b chia hết cho 11
a, Ta có: \(2a+b⋮13\Rightarrow2.\left(2a+b\right)⋮13\Rightarrow4a+2b⋮13\)
Mà \(5a-4b⋮13\) \(\Rightarrow\left(5a-4b\right)-\left(4a+2b\right)⋮13\Rightarrow5a-4b-4a-2b⋮13\)
\(\Rightarrow a-6b⋮13\) (đpcm)
Vậy...
b, Ta có: \(98⋮7\Rightarrow98a⋮7\). Mà \(100a+b⋮7\Rightarrow\left(100a+b\right)-98a⋮7\Rightarrow100a+b-98a⋮7\)
\(\Rightarrow2a+b⋮7\Rightarrow4.\left(2a+b\right)⋮7\Rightarrow8a+4b⋮7\)
Mặt khác \(7a⋮7\Rightarrow8a+4b-7a⋮7\Rightarrow a+4b⋮7\) (đpcm)
Vậy...
b, Ta có: \(3a+4b⋮11\Rightarrow4.\left(3a+4b\right)⋮11\Rightarrow12a+16b⋮11\)
Mà \(11\left(a+b\right)⋮11\Rightarrow11a+11b⋮11\)
\(\Rightarrow\left(12a+16b\right)-\left(11a+11b\right)⋮11\Rightarrow12a+16b-11a-11b⋮11\)
\(\Rightarrow a+5b⋮11\) (đpcm)
Vậy...
bạn ơi bạn làm ngược lại câu b cho mình đc không mình cần gấp
Trong app này có cả bộ đề thi + thi thử bạn thử xem nha! https://giaingay.com.vn/downapp.html
cho a,b thuộc N chứng tỏ 3a+5b chia hết cho 7<=>a+4b chia hết cho 7
A= 3a+5b
B= a+4b
3B - A = 3a+12b - 3a -5b = 7b chia hết cho 7
+ Nếu A chia hết cho 7 => 3B chia hết cho 7 => B chia hết cho 7
+Nếu B chia hết cho 7 => 3B chia hết cho 7 => A chia hết cho 7
=> đpcm
Xét 3a+5b+4(a+4b)
= 3a+5b+4a+16b
= 7a+21b
=7(a+3b) chia hết cho 7
Nên 3a+5b chia hết cho 7 <=> a+4b chia hết cho 7