Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6


Những câu hỏi liên quan
H24
Xem chi tiết
PT
31 tháng 1 2018 lúc 17:40

đặt các biểu thức trên bằng a rồi nhân lên dùng denta

Bình luận (0)
VH
Xem chi tiết
NH
15 tháng 4 2018 lúc 16:39

A=\(\frac{2\left(x^2-8x+22\right)-1}{x^2-8x+22}\)=2-\(\frac{1}{x^2-8x+22}\)

ĐỂ A CÓ GTNH THÌ \(\frac{1}{x^2-8x+22}\)LỚN NHẤt    thì x2-8x+22 nhỏ nhất

SUY RA X2-8X+22=x2-8x+16+6=(x-4)2+6>=6(do (x-4)2>=0)

GTNN CỦA x2-8x+22 là 6 khi và chỉ khi (x-4)2=0\(\Leftrightarrow\)x=4

vậy GTNN CỦA A=2-\(\frac{1}{6}\)=\(\frac{11}{6}\)TẠI X=4

B=1-\(\frac{4}{x}\)+\(\frac{1}{x^2}\)

Dặt \(\frac{1}{x}\)=t         ta có 

B=1-4t+t2=t2-4t+4-3=(t-2)2-3>=-3       dấu bằng xảy ra khi và chỉ khi (t-2)2=0\(\Leftrightarrow\)t=2

                                                                                                                            \(\Leftrightarrow\)\(\frac{1}{x}\)=2

                                                                                                                             \(\Leftrightarrow\)=\(\frac{1}{2}\)

vậy GTNN là -3 tại x=1/2

Bình luận (0)
NH
15 tháng 4 2018 lúc 17:35

2,a, GTNN      A=\(\frac{x^2-12x+36-x^2-9}{x^2+9}\)=\(\frac{\left(x-6\right)^2-\left(x^2+9\right)}{x^2+9}\)=\(\frac{\left(x-6\right)^2}{x^2+9}\)-1

          do \(\frac{\left(x-6\right)^2}{x^2+9}\)\(\ge\)0 với mọi x \(\Rightarrow\)\(\frac{\left(x-6\right)^2}{x^2+9}\)-1\(\ge\)-1

dấu = xảy ra khi và chỉ khi (x-6)2\(\Leftrightarrow\)x=6

vậy GTNN của A=-1 tại x=6

B,GTNN          B=\(\frac{4\left(x^2+2x+1\right)-4x^2-1}{4x^2+1}\)=\(\frac{4\left(x+1\right)^2}{4x^2+1}\)-1

DO \(\frac{4\left(x+1\right)^2}{4x^2+1}\)\(\ge\)0\(\Rightarrow\)\(\frac{4\left(x+1\right)^2}{4x^2+1}\)-1\(\ge\)-1

dấu =xảy ra khi và chỉ khi 4(x+1)2=0

                                         \(\Leftrightarrow\)x=-1

vạy GTNN của B=-1 tại x=-1

C, GTLN           C=\(\frac{-\left(x^2-2x+1\right)+x^2+2}{x^2+2}\)=2-\(\frac{\left(x-1\right)^2}{x^2+2}\)

DO \(\frac{\left(x-1\right)^2}{x^2+2}\)\(\ge\)0\(\Rightarrow\)    2-  \(\frac{\left(x-1\right)^2}{x^2+2}\)\(\le\)2

dấu = xảy ra khi và chỉ khi (x-1)2=0\(\Leftrightarrow\)x=1

Vậy GTLN của c=2 tại x=1

Bình luận (0)
DH
Xem chi tiết
LD
9 tháng 9 2017 lúc 12:58

Ta có : \(P=2x^2-8x+1=2\left(x^2-4x\right)+1=2\left(x^2-4x+4-4\right)+1=2\left(x-2\right)^2-7\)

Vì \(2\left(x-2\right)^2\ge0\forall x\) 

Nên : \(P=2\left(x-2\right)^2-7\ge-7\forall x\in R\)

Vậy \(P_{min}=-7\) khi x = 2

Bình luận (0)
VT
Xem chi tiết
UN
27 tháng 5 2017 lúc 21:32

Ta có A= x^3 + 2x^2 + 5x + 10/ x^2 + 4x+4 

A= x^2(x+2)+5(x+2)/ (x+2)^2

A= (x^2)(x^2+5)/ (x+2)(x+2)

A= x^2+5/ x+2 

Để A= x^2+5/ x+2 bé nhất thì x^2+5 phải bé nhất

MÀ x^2 lớn hơn hoặc = 0 vs mọi x => x^2=0 => x^2 + 5 = 5 vs x=0

Thay x=0 vào A có 0^2 + 5/ 0+2 = 5/2

Vậy MinA=5/2 vs x=0

Bình luận (0)
AD
Xem chi tiết
NT
27 tháng 8 2016 lúc 18:59

không có điều kiện à

Bình luận (0)
BN
Xem chi tiết
NN
Xem chi tiết
CL
22 tháng 3 2020 lúc 15:20

a)
\(B=\frac{x^2-4x+1}{x^2}=1-\frac{4}{x}+\frac{1}{x^2}\)

Đặt \(y=\frac{1}{x}\)

\(\Rightarrow B=1-4y+y^2=y^2-4y+4-3=\left(y-2\right)^2-3\ge-3\)

Dấu = xảy ra \(\Leftrightarrow y=2\Leftrightarrow\frac{1}{x}=2\Leftrightarrow x=\frac{1}{2}\)

Vậy GTNN của B là -3 <=> x=1/2

Bình luận (0)
 Khách vãng lai đã xóa
CL
22 tháng 3 2020 lúc 15:27

\(C=\frac{2x}{x^2+1}=\frac{x^2+1-x^2+2x-1}{x^2+1}=1-\frac{\left(x-1\right)^2}{x^2+1}\le1\)

Dấu bằng xảy ra <=> x=1

\(C=\frac{2x}{x^2+1}=\frac{x^2+2x+1-x^2-1}{x^2+1}=\frac{\left(x+1\right)^2}{x^2+1}-1\ge-1\)

Dấu bằng xảy ra <=> x=-1

Vậy maxC=1 <=>x=1
minC=-1 <=> x=-1

Bình luận (0)
 Khách vãng lai đã xóa
KT
Xem chi tiết
BB
Xem chi tiết