I 2x- 2016I- 1/(x- y)^2. Tim giá trị nhỏ nhất của biểu thức.
Cảm ơn các bạn trước nha .
Tìm giá trị nhỏ nhất của biểu thức A= |2x-2| + |2x-2013| với x là số nguyên.
Các bạn giúp mình nhé!!!
Cảm ơn trước nha :P
Áp dụng bđt |a| + |b| ≥ |a + b| ta có :
A = |2x - 2| + |2x - 2013| = |2 - 2x| + |2x - 2013| ≥ |2 - 2x + 2x - 2013| = |- 2011| = 2011
Dấu "=" xảy ra <=> (2 - 2x)(2x - 2013) ≥ 0 => 2013/2 ≥ x ≥ 1
Vậy GTNN của A là 2011 <=> 2013/2 ≥ x ≥ 1
Tìm giá trị nhỏ nhất của biểu thức: P= x2 + y2 - 2x +6y +12.
Cảm ơn mọi người trước nha.
P = x2 + y2 - 2x + 6y + 12 = x2 + y2 - 2x + 6x + 1 + 9 + 2
=> P = (x2 - 2x + 1) + (y2 + 6y + 9) + 2
=> P = (x - 1)2 + (y + 3)2 + 2 \(\ge\)2
Đẳng thức xảy ra khi: (x - 1)2 = 0 và (y + 3)2 = 0 <=> x = 1 và y = -3
Vậy GTNN của P là 2 khi x = 1 và y = -3.
a) Cho x – y = 3 tìm giá trị của biểu thức: B = |x – 6| + |y + 1|
b) Cho x – y = 2 tìm giá trị nhỏ nhất của biểu thức: C = |2x + 1| + |2y + 1|
c) Cho 2x + y = 3 tìm giá trị nhỏ nhất của biểu thức: D = |2x + 3| + |y + 2| + 2
Giúp mình với chiều nay mình phải nộp rồi. Cảm ơn các bạn!
Các bài này em áp dụng công thức \(\left|a\right|+\left|b\right|\ge\left|a+b\right|\). Dấu "=" xảy ra khi tích \(a.b\ge0\),
a) Ta có : \(x-y=3\Rightarrow x=3+y\).
Do đó : \(B=\left|x-6\right|+\left|y+1\right|\)
\(=\left|3+y-6\right|+\left|y+1\right|=\left|3-y\right|+\left|y+1\right|\)
\(\ge\left|3-y+y+1\right|=4\)
Dấu "=" xảy ra \(\Leftrightarrow\left(3-y\right)\left(y+1\right)\ge0\)
\(\Leftrightarrow\hept{\begin{cases}-1\le y\le3\\2\le x\le6\end{cases},x-y=3}\)
Vậy giá trị nhỏ nhất của \(B=4\) \(\Leftrightarrow\hept{\begin{cases}-1\le y\le3\\2\le x\le6\end{cases},x-y=3}\)
b) Ta có : \(x-y=2\Rightarrow x=2+y\)
Do đó \(C=\left|2x+1\right|+\left|2y+1\right|\)
\(=\left|2y+5\right|+\left|2y+1\right|=\left|-2y-5\right|+\left|2y+1\right|\)
\(\ge\left|-2y-5+2y+1\right|=4\)
Các câu khác tương tự nhé em !
Làm nốt câu c
Bài giải
c, Ta có :
\(D=\left|2x+3\right|+\left|y+2\right|+2\ge\left|2x+3+y+2\right|+2=\left|3+3+2\right|+2=8+2=10\)
Dấu " = " xảy ra khi \(2x+y=3\)
Vậy \(\text{Khi }2x+y=3\text{ }Min_D=10\)
Các bạn ơi giúp mình câu này với :
Tìm giá trị nhỏ nhất của biểu thức sau : E = (2x-1)^2+(2x+1)^2+2004
Mình cảm ơn trước nha !!!
Cho mình hỏi có bạn nào biết làm câu này ko? Giúp mình với mai mình nộp rồi:
Tìm giá trị nhỏ nhất của biểu thức
X^2+4y^2+2x-y+2
Cảm ơn mấy bạn nha.
( Nhờ các bạn trình bày đầy đủ được ko? )
\(\left(X^2+2x+1\right)+\left(4y^2+\frac{4.1y}{4}+\frac{1}{16}\right)+2-\frac{1}{16}.\)
\(\left(x+1\right)^2+\left(2y+\frac{1}{4}\right)^2+\frac{15}{16}\ge\frac{15}{16}\)
\(x^2+4y^2+2x-y+2\)
\(=\left(x^2+2x+1\right)+\left[\left(2y\right)^2-2.2y.\frac{1}{4}+\left(\frac{1}{4}\right)^2\right]+\frac{15}{16}\)
\(=\left(x+1\right)^2+\left(2y-\frac{1}{4}\right)+\frac{15}{16}\)
Ta có: \(\hept{\begin{cases}\left(x+1\right)^2\ge0\forall x\\\left(2y-\frac{1}{4}\right)\ge0\forall y\end{cases}\Rightarrow\left(x+1\right)^2+\left(2y-\frac{1}{4}\right)+\frac{15}{16}\ge\frac{15}{16}}\)
Dấu " = " xảy ra \(\Leftrightarrow\hept{\begin{cases}\left(x+1\right)^2=0\\\left(2y-\frac{1}{4}\right)=0\end{cases}\Leftrightarrow\hept{\begin{cases}x+1=0\\2y-\frac{1}{4}=0\end{cases}\Leftrightarrow}\hept{\begin{cases}x=-1\\y=\frac{1}{8}\end{cases}}}\)
Vậy GTNN của \(x^2+4y^2+2x-y+2=\frac{15}{16}\Leftrightarrow\hept{\begin{cases}x=-1\\y=\frac{1}{8}\end{cases}}\)
Tham khảo nhé~
Các bạn giúp mình bài này với nha!
Tìm giá trị nhỏ nhất của biểu thức:
x2 + x + 1 ( x - 3 )( x + 5 ) + 4
Cảm ơn mọi người đã giúp!
`x^2+x+1=x^2+x+1/4+3/4=(x+1/2)^2 +3/4`
Vì `(x+1/2)^2 >= 0` với mọi `x`
`=>(x+1/2)^2 +3/4 >= 3/4` với mọi `x`
`=>` Biểu thức Min `=3/4<=>x=-1/2`
_____________
`(x-3)(x+5)+4=x^2+2x-11=x^2+2x+1-12=(x+1)^2-12`
Vì `(x+1)^2 >= 0` với mọi `x`
`=>(x+1)^2-12 >= -12` với mọi `x`
`=>` Biểu thức Min `=-1/2<=>x=-1`
Tìm giá trị nhỏ nhất của biểu thức:
P=|x-1/2|+3/4-x
giải giúp mik nha!
mik cảm ơn trước ạ!
+) Nếu\(x\ge\frac{1}{2}\)thì \(\left|x-\frac{1}{2}\right|=x-\frac{1}{2}\)
\(\Rightarrow P=x-\frac{1}{2}+\frac{3}{4}-x=\frac{1}{4}\)(1)
+) Nếu \(x< \frac{1}{2}\)thì \(\left|x-\frac{1}{2}\right|=\frac{1}{2}-x\)
\(\Rightarrow P=\frac{1}{2}-x+\frac{3}{4}-x=\frac{5}{4}-2x\)
Mà \(x< \frac{1}{2}\Leftrightarrow2x< 1\Leftrightarrow-2x>-1\Leftrightarrow\frac{5}{4}-2x>\frac{1}{4}\)(1)
Từ (1) và (2) suy ra \(P\ge\frac{1}{4}\)
\(\Rightarrow P_{min}=\frac{1}{4}\Leftrightarrow x=\frac{1}{2}\)
Tìm giá trị nhỏ nhất hoặc giá trị lớn nhất
a, N = 2x - 2x^2 - 5
b, M = x^2 + Y^2 - x + 6y + 10
các bạn xem hộ mik nha
cảm ơn nhanh nhanh hộ mik, mik cần gấp trước ngày mai
ai nhanh và đúng mik tick cho
1.Tìm giá trị nhỏ nhất của P=(x−1)(x+2)(x+3)(x+6)
Q=\(\frac{3x^2+2x+3}{x^2+1}\)
RÁNG GIẢI GIÚP MÌNH NHA! CẢM ƠN CÁC BẠN TRƯỚC!
\(P=\left(x-1\right)\left(x+2\right)\left(x+3\right)\left(x+6\right)=\left[\left(x+6\right)\left(x-1\right)\right]\left[\left(x+2\right)\left(x+3\right)\right]\)
\(P=\left(x^2+5x-6\right)\left(x^2+5x+6\right)=\left(x^2+5x\right)^2-6^2.P_{min}\Leftrightarrow x^2+5xđạtGTNN\)
\(x^2+5x\ge0\Leftrightarrow x\left(x+5\right)\ge0\)
Dấu "=" xảy ra <=> \(x\in\left\{0;-5\right\}\)
Vậy: Pmin=-36 <=> x E {0;-5}