Cho x,y là các số thực dương lớn hơn 1. Chứng minh :\(\frac{x^2}{y-1}+\frac{y^2}{x-1}\ge8\)
Câu 1: Cho x,y là các số thực dương thõa mãn xy=1. Chứng minh rằng: \(\left(x+y+1\right)\left(x^2+y^2\right)+\frac{4}{x+y}\ge8\)
Câu hỏi của Tuấn Anh Nguyễn - Toán lớp 9 - Học toán với OnlineMath
Tham khảo bài giải nhé !
CHúc bạn học tốt
1) với x,y là số thực dương, tìm giá trị nhỏ nhất của biểu thức \(\sqrt{\frac{x^3}{x^3+8y^3}}+\sqrt{\frac{4y^3}{y^3+\left(x+y\right)^3}}\)
2) cho x,y,z là các số thực lớn hơn -1. chứng minh \(\frac{1+x^2}{1+y+z^2}+\frac{1+y^2}{1+z+x^2}+\frac{1+z^2}{1+x+y^2}\ge2\)
Bài 1: \(T=\sqrt{\frac{x^3}{x^3+8y^3}}+\sqrt{\frac{4y^3}{y^3+\left(x+y\right)^3}}\)
\(=\frac{x^2}{\sqrt{x\left(x^3+8y^3\right)}}+\frac{2y^2}{\sqrt{y\left[y^3+\left(x+y\right)^3\right]}}\)
\(=\frac{x^2}{\sqrt{\left(x^2+2xy\right)\left(x^2-2xy+4y^2\right)}}+\frac{2y^2}{\sqrt{\left(xy+2y^2\right)\left(x^2+xy+y^2\right)}}\)
\(\ge\frac{2x^2}{2x^2+4y^2}+\frac{4y^2}{2y^2+\left(x+y\right)^2}\ge\frac{2x^2}{2x^2+4y^2}+\frac{4y^2}{2x^2+4y^2}=1\)
\(\Rightarrow T\ge1\)
Bài 2:
[Toán 10] Bất đẳng thức | Page 5 | HOCMAI Forum - Cộng đồng học sinh Việt Nam
Cho x,y,z là các số thực lớn hơn -1 Chứng minh \(\frac{1+x^2}{1+y+z^2}+\frac{1+y^2}{1+z+x^2}+\frac{1+z^2}{1+x+y^2}\)
cho x, y là các số thực thỏa mãn x khác y , xy=1. chứng minh \(\frac{\left(x^2+y^2\right)^2}{\left(x-y\right)^2}\ge8\)
Bài 1 : cho x, y thoả mãn \(xy\ge2\). Tìm giá trị nhỏ nhất
\(P=\frac{1}{1+x^2}+\frac{4}{4+y^2}+xy\)
Bài 2 : cho số thực x thoả mãn 0 < x < 1. Tìm Min thức
\(A=\frac{2}{1-x}+\frac{1}{x}\)
Bài 3 : Cho a, b, c là các số lớn hơn 1
Chứng minh \(\frac{a^2}{b-1}+\frac{b^2}{c-1}+\frac{c^2}{a-1}\ge12\)
Bài 4 : cho các số dương a
Chứng minh \(a^2+\frac{36}{a+1}\ge16\)
Bài 5 :
a, tìm tất cả số hữu tỉ x sao cho \(A=x^2+x+6\) là 1 số chính phương
b, Cho x > 1 và y > 1
Chứng minh \(\frac{\left(x^3+y^3\right)-\left(x^2+y^2\right)}{\left(x+y\right)\left(y-1\right)}\ge8\)
Bài 1:
Ta có: \(P=\frac{1}{1+x^2}+\frac{4}{4+y^2}=\frac{1}{1+x^2}+\frac{1}{1+\frac{y^2}{4}}\)
Đặt \(\left(x;\frac{y}{2}\right)=\left(a;b\right)\left(a,b>0\right)\)
\(\Rightarrow\hept{\begin{cases}P=\frac{1}{1+a^2}+\frac{1}{1+b^2}+2ab\\ab\ge1\end{cases}}\)
Ta có: \(P=\frac{1}{1+a^2}+\frac{1}{1+b^2}+2ab\)
\(\ge\frac{1}{ab+a^2}+\frac{1}{ab+b^2}+2ab=\frac{1}{ab}+2ab\)
\(=\left(\frac{1}{ab}+ab\right)+ab\ge2+1=3\)
Dấu "=" xảy ra khi: \(ab=\frac{1}{ab}\Rightarrow ab=1\Rightarrow xy=2\)
Bài 3:
Đặt \(\left(a-1;b-1;c-1\right)=\left(x;y;z\right)\left(x,y,z>1\right)\)
Khi đó:
\(BĐTCCM\Leftrightarrow\frac{\left(x+1\right)^2}{y}+\frac{\left(y+1\right)^2}{z}+\frac{\left(z+1\right)^2}{x}\ge12\)
Thật vậy vì ta có:
\(VT=\frac{\left(x+1\right)^2}{y}+\frac{\left(y+1\right)^2}{z}+\frac{\left(z+1\right)^2}{x}\)
\(=\frac{x^2+2x+1}{y}+\frac{y^2+2y+1}{z}+\frac{z^2+2z+1}{x}\)
\(=\left(\frac{2x}{y}+\frac{2y}{z}+\frac{2z}{x}\right)+\left(\frac{x^2}{y}+\frac{y^2}{z}+\frac{z^2}{x}+\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)\)
Áp dụng BĐT Cauchy ta có:
\(VT\ge3\sqrt[3]{\frac{2x}{y}\cdot\frac{2y}{z}\cdot\frac{2z}{x}}+6\sqrt[6]{\frac{x^2}{y}\cdot\frac{y^2}{z}\cdot\frac{z^2}{x}\cdot\frac{1}{x}\cdot\frac{1}{y}\cdot\frac{1}{z}}=6+6=12\)
Dấu "=" xảy ra khi: \(x=y=z\Leftrightarrow a=b=c\)
Bài 5:
a) Đặt \(A=x^2+x+6=m^2\left(m\inℤ\right)\)
\(\Leftrightarrow4x^2+4x+24=4m^2\)
\(\Leftrightarrow\left(2x+1\right)^2+23=4m^2\)
\(\Leftrightarrow\left(2x+1\right)^2-\left(2m\right)^2=-23\)
\(\Leftrightarrow\left(2x-2m+1\right)\left(2x+2m+1\right)=-23=1\cdot\left(-23\right)=\left(-1\right)\cdot23\)
Xét bảng sau:
2x-2m+1 | 1 | 23 | -1 | -23 |
2x+2m+1 | -23 | -1 | 23 | 1 |
x | -6 | 5 | 5 | -6 |
m | -6 | -6 | 6 | 6 |
Vậy \(x\in\left\{5;-6\right\}\)
cho x và y là các số thực >1 chứng minh: \(\frac{x^3+y^3-\left(x^2+y^2\right)}{\left(x-1\right)\left(y-1\right)}\ge8\)
Cho ba số thực dương x,y,z thỏa mãn \(\frac{1}{x+1}+\frac{1}{y+1}+\frac{1}{z+1}=1\)
Chứng minh rằng: Trong ba số x,y,z có ít nhất 1 số không nhỏ hơn 2 và có ít nhất 1 số không lớn hơn 2.
Ta giả sử 3 số đều =2
=>\(\frac{1}{3}+\frac{1}{3}+\frac{1}{3}=1\)(Đúng)
=>đpcm
P/s : nhanh gọn lẹ :))
Đặt \(A=\frac{1}{x+1}+\frac{1}{y+1}+\frac{1}{z+1}=1\)
Không mất tính tổng quát giả sử:
\(\frac{1}{x+1}< \frac{1}{y+1}< \frac{1}{z+1}\)
Ta có
+) \(A>\frac{3}{1+x}\Leftrightarrow1>\frac{3}{1+x}\)
\(\Leftrightarrow\frac{1}{3}>\frac{1}{x+1}\Leftrightarrow x+1>3\)
<=> x>2(1)
+) \(A< \frac{3}{1+z}\Leftrightarrow1< \frac{3}{1+z}\Leftrightarrow\frac{1}{3}< \frac{1}{1+z}\Leftrightarrow1+z< 3\Leftrightarrow x< 2\)(2)
Từ (1) (2) => ĐPCM
giúp mình với cho x,y,z là các số thực lớn hơn -1. Chứng minh \(\frac{\left(1+x^2\right)}{1+y+z^2}+\frac{1+y^2}{1+z+x^2}+\frac{1+z^2}{1+x+y^2}>=2.\)giúp mình nhé!!!!
Cho 3 số thực dương x,y,z thõa mãn \(\frac{1}{1+x}+\frac{1}{1+y}+\frac{1}{1+z}=1\)\(1\)
Chứng minh rằng: Trong 2 số x,y,z có ít nhất một số không nhỏ hơn 2 và có ít nhất 1 số không lớn hơn 2.