Chứng minh rằng : 16^5+21^5 chia hết cho 33
Chứng minh rằng:
S= 165 + 215 chia hết cho 33
áp dụng t/c máy tính
xét 165+215 không chia hết cho 33
=> đề bài vô nghiệm
Chứng minh rằng:
a) 165 + 215 chia hết cho 33.
b) 1028 + 8 chia hết cho 72.
a) Chứng minh rằng: 165 + 215 chia hết cho 33
165 + 215
= (24)5 + 215
= 220 + 215
= 215. 25 + 215
= 215( 25 + 1 )
= 215. 33 chia hết cho 33
Vậy 165 + 215 chia hết cho 33
b) Ta có : 1028 + 8 = 100...008 ( 27 chữ số 0 )
Xét 008 chia hết cho 8 ⇒ 1028 + 8 chia hết cho 8. (1)
Xét 1 + 27.0 + 8 = 9 chia hết cho 9 ⇒ 1028 + 8 chia hết cho 9 (2)
Mà U7CLN (8,9) = 1 (3)
Từ (1) ; (2) và (3) ⇒ 1028 + 8 chia hết cho 72 (do 8.9=72)
a ) Ta thấy : \(16^5=2^{20}\)
\(\Rightarrow A=16^5+2^{15}=2^{20}+2^{15}\)
\(=2^{15}.2^5+2^{15}\)
\(=2^{15}.\left(2^5+1\right)\)
\(=2^{15}.33\)
Nên số này luôn chia hết cho 33
b )
Ta có:10 đồng dư với 1(mod 9)
Suy ra 10^28 đồng dư với 1^28 đồng dư với 1( mod 9)
Mà 8 đồng dư với -1 (mod 9)
Suy ra 10^28 +8 chia hết cho 9(mod 9) (1)
Mặt khác 10^ 3 chia hết cho 8 suy ra 10^28 chia hết cho 8 suy ra 10^28 +8 chia hết cho 8 (2)
ƯCLN (8;9)=1 (3)
Từ (1);(2);(3) suy ra(đpcm)
Chứng Minh Rằng: 16^5 + 2^5 chia hết cho 33
Bài 1. So sánh: \(2^{49}\) và \(5^{21}\)
Bài 2. a, Chứng minh rằng S = 1 + 3 + 32 + 33 + ... + 399 chia hết cho 40.
b, Cho S = 1 + 4 + 42 + 43 + ... + 462. Chứng minh rằng S chia hết cho 21.
Giúp mk với
Bài 1:
\(2^{49}=\left(2^7\right)^7=128^7;5^{21}=\left(5^3\right)^7=125^7\\ Vì:128^7>125^7\Rightarrow2^{49}>5^{21}\)
Bài 2:
\(a,S=1+3+3^2+3^3+...+3^{99}\\ =\left(1+3+3^2+3^3\right)+3^4.\left(1+3+3^2+3^3\right)+...+3^{96}.\left(1+3+3^2+3^3\right)\\ =40+3^4.40+...+3^{96}.40\\ =40.\left(1+3^4+...+3^{96}\right)⋮40\\ b,S=1+4+4^2+4^3+...+4^{62}\\ =\left(1+4+4^2\right)+4^3.\left(1+4+4^2\right)+...+4^{60}.\left(1+4+4^2\right)\\ =21+4^3.21+...+4^{60}.21\\ =21.\left(1+4^3+...+4^{60}\right)⋮21\)
Bài 1 :
\(2^{49}=\left(2^7\right)^7=128^7\)
\(5^{21}=\left(5^3\right)^7=125^7\)
mà \(125^7< 128^7\)
\(\Rightarrow2^{49}>5^{21}\)
Bài 2 :
a) \(S=1+3+3^2+3^3+...3^{99}\)
\(\Rightarrow S=\left(1+3+3^2+3^3\right)+3^4\left(1+3+3^2+3^3\right)...+3^{96}\left(1+3+3^2+3^3\right)\)
\(\Rightarrow S=40+40.3^4+...+40.3^{96}\)
\(\Rightarrow S=40\left(1+3^4+...+3^{96}\right)⋮40\)
\(\Rightarrow dpcm\)
b) \(S=1+4+4^2+4^3+...4^{62}\)
\(\Rightarrow S=\left(1+4+4^2\right)+4^3\left(1+4+4^2\right)+...4^{60}\left(1+4+4^2\right)\)
\(\Rightarrow S=21+4^3.21+...4^{60}.21\)
\(\Rightarrow S=21\left(1+4^3+...4^{60}\right)⋮21\)
\(\Rightarrow dpcm\)
Chứng minh rằng 16 mũ 5 + 2 mũ 15 chia hết cho 33
16 mũ 5 +2 mũ 15=1081344
1081344:33=32768.
chia hết thây.tính thử lại bằng máy tính xem!
ta có :=(24)5 + 215
= 220 + 215
= 215.(25 + 1)
= 215.33 chia hết cho 33
vậy A chia hết cho 33 ( điều phải chứng minh)
chứng minh rằng : 16^5 + 2^14 chia hết cho 33
Không thể chứng minh \(16^5+2^{14}⋮33\) đơn giản là vì \(16^5+2^{14}⋮̸33,16^5+2^{14}\div33=32271.514515\)
Xin phép sửa đề thành 165 + 215 ạ :)
Ta có 165 + 215 = ( 24 )5 + 215
= 220 + 215
= 215.25 + 215.1
= 215( 25 + 1 )
= 215.33 \(⋮\)33 ( đpcm )
165 + 214 = (24)5 + 214 = 220 + 214 = 214(26 + 1)= 214 . 65 \(⋮\)65 không chia hết cho 33 -> đề sai
Nếu sửa lại thì đề như vậy : Chứng minh rằng : 165 + 215 chia hết cho 33 thì mới chia hết được nhé
chứng minh rằng
a, S1 = 5+52+53+...+599+5100 chia hết cho 6
b, S2 =2+22+23+...+299+2100 chia hết cho 31
c, S3= 165+215 chia hết cho 33
\(S1=\left(5+5^2\right)+\left(5^3+5^4\right)+...+\left(5^{99}+5^{100}\right)\)
\(=5.\left(1+5\right)+5^3.\left(1+5\right)+...+5^{99}.\left(1+5\right)\)
\(=5.6+5^3.6+...+5^{99}.6\)
\(=6.\left(5+5^3+...+5^{99}\right)⋮6\)
câu b tương tự
\(S3=16^5+21^5\)
vì 16+21=33 chia hết cho 33
=>165+215 chia hết cho 33
P/S: theo công thức:(n+m chia hết cho a=> nb+mb chia hết cho a)
S1 = 5+52+53+...+599+5100
=5. (1+5)+53 . (1+5) + ... + 599.(1+5)
= 5.6 +53.6+..+ 599.6
=6.(5+53 + ... +599):6
vậy x = ...
b)2+22+23+...+299+2100
=2.(1+2)+23.(1+2) + ... + 299.(1+2)
=2.3+23+..+299):3
= ....
c)165+215
vì 16+21 chia hế 33 nên
theo công thức(n+m chia hết cho a=(nb+mb)
S1 = 5+52+53+...+599+5100
=5. (1+5)+53 . (1+5) + ... + 599.(1+5)
= 5.6 +53.6+..+ 599.6
=6.(5+53 + ... +599):6
vậy x = ...
b)2+22+23+...+299+2100
=2.(1+2)+23.(1+2) + ... + 299.(1+2)
=2.3+23+..+299):3
= ....
c)165+215
vì 16+21 chia hế 33 nên
theo công thức(n+m chia hết cho a=(nb+mb)
Chứng minh rằng:
a, 7^6+7^7 chia hết cho 55
b, 16^5+2^15 chia hết cho 33
a. Mình chỉ có thể chứng minh 7^6 + 7^7 chia hết cho 56 được thôi.
Ta có: \(7^6+7^7=7^5\left(7+7^2\right)=7^5\times56\)
\(\Rightarrow7^6+7^7⋮56\)(vì có chứa thừa số 56)
b. \(16^5+2^{15}=\left(2^4\right)^5+2^{15}=2^{20}+2^{15}\)
\(=2^{15}\times\left(2^5+1\right)=2^{15}\times33\)
\(\Rightarrow16^5+2^{15}⋮33\)(vì có chứa thừa số 33)
câu a sai đề, bạn thử bấm máy xem chia hết ko
câu b
16^5 chia 33 dư 1
2^15 chia 33 dư 32
vậy 16^5 + 2^15 chia hết cho 33
chứng minh rằng :
a) S1= 5+5^2+5^3+ ... +5^2004 chia hết cho 6;31;156
b)S2 =16^5 + 2^15 chia hết cho 33
c) S3 =53! -51! chia hết cho 29