Những câu hỏi liên quan
H24
Xem chi tiết
H24
Xem chi tiết
CN
6 tháng 2 2020 lúc 20:04

*Có : 52 < 5.6 => \(\frac{1}{5^2}>\frac{1}{5.6}\)

         62 < 6.7 =>\(\frac{1}{6^2}>\frac{1}{6.7}\)

   ....

         1002 < 100 . 101 => \(\frac{1}{100^2}>\frac{1}{100.101}\)

Cộng từng vế có :

\(\frac{1}{5^2}+\frac{1}{6^2}+...+\frac{1}{100^2}>\frac{1}{5.6}+\frac{1}{6.7}+...+\frac{1}{100.101}\)

\(A>\frac{1}{5}-\frac{1}{6}+\frac{1}{6}-\frac{1}{7}+...\frac{1}{100}-\frac{1}{101}\)

\(A>\frac{1}{5}-\frac{1}{101}\)

Mà \(\frac{1}{5}-\frac{1}{101}=\frac{101-5}{105}=\frac{96}{505}\)

=> \(A>\frac{96}{505}\)

Mà \(\frac{1}{6}=\frac{96}{576}< \frac{96}{505}\)

=> \(A>\frac{1}{6}\)(1)

*Có 52 > 5.4 => \(\frac{1}{5^2}< \frac{1}{5.4}\)

.......

    1002 > 100.99 => \(\frac{1}{100^2}< \frac{1}{100.99}\)

Cộng từng vế có :

........ => A < \(\frac{96}{400}\)

Có \(\frac{1}{4}=\frac{100}{400}>\frac{96}{400}\)

=> A < \(\frac{1}{4}\)(2)

Từ (1)(2) => đpcm

Bình luận (0)
 Khách vãng lai đã xóa
MG
24 tháng 7 2021 lúc 8:25

\(\text{Ta thấy :}\)

\(\frac{1}{5^2}>\frac{1}{5.6}\)

\(\frac{1}{6^2}>\frac{1}{6.7}\)

\(......................................\)

\(\frac{1}{100^2}>\frac{1}{100.101}\)

\(\Rightarrow A=\frac{1}{5^2}+\frac{1}{6^2}+...+\frac{1}{100^2}>\frac{1}{5.6}+\frac{1}{6.7}+...+\frac{1}{100.101}\)

\(\Rightarrow A>\frac{1}{5}-\frac{1}{6}+\frac{1}{6}-\frac{1}{7}+...\frac{1}{100}-\frac{1}{101}\)

\(\Rightarrow A>\frac{1}{5}-\frac{1}{101}=\frac{101-5}{105}=\frac{96}{505}>\frac{96}{576}=\frac{1}{6}\)

\(\Rightarrow A>\frac{1}{6}\left(1\right)\)

\(\text{Lại thấy :}\)

\(\frac{1}{5^2}< \frac{1}{5.4}\)

\(\frac{1}{6^2}< \frac{1}{5.6}\)

\(..................................\)

\(\frac{1}{100^2}< \frac{1}{100.99}\)

\(\text{Tương tự như trên ta tính được }:\)

\(A< \frac{96}{400}< \frac{100}{400}=\frac{1}{4}\)

\(\Rightarrow A< \frac{1}{4}\left(2\right)\)

\(\text{Từ (1) và (2)}\Rightarrow\frac{1}{6}< A< \frac{1}{4}\)

Bình luận (0)
 Khách vãng lai đã xóa
NN
Xem chi tiết
HD
Xem chi tiết
PD
13 tháng 10 2017 lúc 12:34

Chung minh rang abcabcchia het cho 37

Bình luận (0)
PD
13 tháng 10 2017 lúc 12:35

tra loi giup minh cau nay voi

Bình luận (0)
PD
13 tháng 10 2017 lúc 12:37

giup minh tra loi cau nay voi nhanh len nhe

Bình luận (0)
NL
Xem chi tiết
TN
Xem chi tiết
KB
5 tháng 5 2017 lúc 7:26

\(A< \frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{49.50}\)

\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{49}-\frac{1}{50}\)

\(=1-\frac{1}{50}< 1< 2\Rightarrow A< 2\Rightarrowđpcm\)

Bình luận (0)
TN
5 tháng 5 2017 lúc 7:55

thanks ban vi minh dang rat can dap an nay

Bình luận (0)
TS
5 tháng 5 2017 lúc 8:26

\(A=\frac{1}{1^2}+\frac{1}{2^2}+.....+\frac{1}{50^2}\)

\(< 1+\frac{1}{1.2}+\frac{1}{2.3}+.....+\frac{1}{49.50}\)

\(=1+1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+.....+\frac{1}{49}+\frac{1}{50}\)

\(=2-\frac{1}{50}< 2\)

Vậy A<2

Bình luận (0)
H24
Xem chi tiết
AN
24 tháng 9 2018 lúc 9:18

\(a^2+b^2+c^2+\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\)

\(=\left(a-1\right)^2+\left(b-1\right)^2+\left(c-1\right)^2+\left(a+\frac{1}{a}\right)+\left(b+\frac{1}{b}\right)+\left(c+\frac{1}{c}\right)+\left(a+b+c\right)-3\)

\(\ge2+2+2+3-3=6\)

Bình luận (0)
PL
Xem chi tiết
NT
27 tháng 1 2016 lúc 21:39

Ta có :

  \(\frac{A}{B}=\frac{\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+......+\frac{1}{100^2}}{\frac{1}{4^2}+\frac{1}{6^2}+\frac{1}{8^2}+......\frac{1}{200^2}}=\frac{4\left(\frac{1}{4^2}+\frac{1}{6^2}+\frac{1}{8^2}+...+\frac{1}{200^2}\right)}{\frac{1}{4^2}+\frac{1}{6^2}+\frac{1}{8^2}+...+\frac{1}{200^2}}=4\)

 Vậy \(\frac{A}{B}=4\) 

Bình luận (0)
ST
Xem chi tiết
NH
29 tháng 5 2015 lúc 21:13

Ta có \(A

Bình luận (0)