Chứng minh rằng \(\sqrt{1903\sqrt{1904}\sqrt{1905}...\sqrt{2501}}< 1904\)
CHung minh: \(\sqrt{1903\sqrt{1904\sqrt{1905\sqrt{...\sqrt{2501}}}}}<1904\)
CMR
\(\sqrt{1903\sqrt{1904\sqrt{1905\sqrt{...\sqrt{2501}}}}}< 1904\)
CMR
\(\sqrt{1903\sqrt{1904\sqrt{1905\sqrt{...\sqrt{2501}}}}}< 1904\)
Chung minh √1903√1904√1905√...√2501<1904
cmr: \(\sqrt{1993\sqrt{1994\sqrt{1995\sqrt{....\sqrt{2501}}}}}<1994\)
tui ko bít làm
mới hok lớp 7 làm được chết liền
Câu 4:
a. Chứng minh rằng: \(\sqrt{22-12\sqrt{2}}\) + \(\sqrt{6+4\sqrt{2}}\) = 4\(\sqrt{2}\)
b. Chứng minh rằng: \(\dfrac{1}{\sqrt{n}+\sqrt{n+1}}\) = \(\sqrt{n+1}\) - \(\sqrt{n}\)
\(a,\sqrt{22-12\sqrt{2}}+\sqrt{6+4\sqrt{2}}=\sqrt{\left(3\sqrt{2}-2\right)^2}+\sqrt{\left(2+\sqrt{2}\right)^2}\\ =3\sqrt{2}-2+2+\sqrt{2}=4\sqrt{2}\\ b,\dfrac{1}{\sqrt{n}+\sqrt{n+1}}=\dfrac{\sqrt{n}-\sqrt{n+1}}{n-n-1}\\ =\dfrac{\sqrt{n}-\sqrt{n+1}}{-1}=\sqrt{n+1}-\sqrt{n}\)
a) \(\sqrt{22-12\sqrt{2}}+\sqrt{6+4\sqrt{2}}\)
\(=\sqrt{\left(3\sqrt{2}-2\right)^2}+\sqrt{\left(2+\sqrt{2}\right)^2}\)
\(=3\sqrt{2}-2+2+\sqrt{2}=4\sqrt{2}\)
b) \(\dfrac{1}{\sqrt{n}+\sqrt{n+1}}=\dfrac{\sqrt{n+1}-\sqrt{n}}{n+1-n}=\sqrt{n+1}-\sqrt{n}\)
Chứng minh rằng:\(\sqrt{45+\sqrt{2009}}+\sqrt{45-\sqrt{2009}}=\sqrt{98}\)
Đặt \(A=\sqrt{45+\sqrt{2009}}+\sqrt{45-\sqrt{2009}}\\ \Rightarrow A^2=45+\sqrt{2009}+45-\sqrt{2009}+2\sqrt{\left(45+\sqrt{2009}\right)\left(45-\sqrt{2009}\right)}\\ \Rightarrow A^2=90+2\sqrt{2025-2009}\\ \Rightarrow A^2=90+2\sqrt{16}\\ \Rightarrow A^2=90+2.4=98\\ \Rightarrow A=\sqrt{98}\)
Chứng minh rằng: (4+\(\sqrt{15}\))(\(\sqrt{10}-\sqrt{6}\))\(\sqrt{4-\sqrt{15}}\)=2
\(\left(4+\sqrt{15}\right)\left(\sqrt{10}-\sqrt{6}\right)\sqrt{4-\sqrt{15}}\)
\(=\left(4+\sqrt{15}\right)\left(\sqrt{5}-\sqrt{3}\right)\sqrt{8-2\sqrt{15}}\)
\(=\left(4+\sqrt{15}\right)\left(\sqrt{5}-\sqrt{3}\right)\sqrt{\left(\sqrt{5}-\sqrt{3}\right)^2}\)
\(=\left(4+\sqrt{15}\right)\left(\sqrt{5}-\sqrt{3}\right)\left(\sqrt{5}-\sqrt{3}\right)\)
\(=\left(4+\sqrt{15}\right)\left(8-2\sqrt{15}\right)\)
\(=\left(4+\sqrt{15}\right)\left(4-2\sqrt{15}\right).2\)
\(=\left(4^2-15\right).2\)
\(=2\left(ĐPCM\right)\)
chứng minh rằng \sqrt{4+\sqrt{4+......+\sqrt{4+\sqrt{4}}}} <3