Những câu hỏi liên quan
LH
Xem chi tiết
US
Xem chi tiết
LH
4 tháng 1 2017 lúc 22:28

Theo đề bài ta có

\(f\left(x\right)=x^{2017}-2016.x^{2016}+2016.x^{2015}-...+2016.x-1\)

Với \(f\left(2015\right)\)thì \(x=2015,x+1=2016\)

\(\Rightarrow f\left(x\right)=x^{2017}-\left(x+1\right).x^{2016}+\left(x+1\right).x^{2015}-...+\left(x+1\right).x-1\)

\(\Rightarrow f\left(x\right)=x^{2017}-x^{2017}-x^{2016}+x^{2016}+x^{2015}-...+x^2+x-1\)

\(\Rightarrow f\left(x\right)=x-1\)

\(\Rightarrow f\left(2015\right)=2015-1=2014\)

Vậy f(2015)=2014

Bình luận (0)
LH
Xem chi tiết
NN
Xem chi tiết
LT
Xem chi tiết
QA
Xem chi tiết
MD
31 tháng 5 2016 lúc 16:45

Ta có x=2015 => x+1 =2016.Thay vào biểu thức,ta có:

\(x^{10}-\left(x+1\right)x^9+\left(x+1\right)x^8-...+\left(x+1\right)x^2-\left(x+1\right)x+\left(x+1\right)\)

\(=x^{10}-x^{10}+x^9-x^9+...+x^2-x^2-x+x+1\)=1

Bình luận (0)
TA
Xem chi tiết
NH
Xem chi tiết
NH
Xem chi tiết