Những câu hỏi liên quan
LQ
Xem chi tiết
DH
Xem chi tiết
DH
29 tháng 7 2021 lúc 21:22

Xét khoảng \(\left(n+1\right)!+2\)đến \(\left(n+1\right)!+n+1\).

Khoảng này có \(n\)số tự nhiên. 

Với \(k\)bất kì \(k=\overline{2,n+1}\)thì 

\(\left(n+1\right)!+k⋮k\)do đó không là số nguyên tố. 

Do đó ta có đpcm.

Bình luận (0)
 Khách vãng lai đã xóa
DH
Xem chi tiết
TH
29 tháng 7 2021 lúc 11:55

Gọi n số đó là \(a_1=\left(n+1\right)!+2;a_2=\left(n+1\right)!+3;...;a_n=\left(n+1\right)!+n\).

Khi đó \(a_k=\left(n+1\right)!+k+1\). (Với \(1\le k\le n\))

Dễ thấy \(k+1\le n+1\) nên \(\left(n+1\right)!⋮k+1\Rightarrow a_k⋮k+1\). Mà \(a_k>k+1\) nên \(a_k\) là hợp số.

Vậy...

 

 

Bình luận (0)
DT
Xem chi tiết
NC
Xem chi tiết
LT
8 tháng 12 2021 lúc 18:15
Xin lỗi nha mik cũng chịu tự nhiên lướt ngang qua lại thấy 😅
Bình luận (0)
 Khách vãng lai đã xóa
NB
8 tháng 12 2021 lúc 20:27

5676538564875x787866688089=bao nhieu mn oi

Bình luận (0)
 Khách vãng lai đã xóa
VD
8 tháng 12 2021 lúc 21:54

lớp mấy thế mà khó v tui lớp 5

Bình luận (0)
 Khách vãng lai đã xóa
LH
Xem chi tiết
TD
7 tháng 1 2017 lúc 16:57

(Modulo 3, nha bạn.)

Giả sử tồn tại 5 số thoả đề.

Trong 5 số nguyên dương phân biệt đó sẽ xảy ra 2 trường hợp:

1. Có 1 số chia hết cho 3, 1 số chia 3 dư 1, 1 số chia 3 dư 2.

Khi đó, tổng 3 số này chia hết cho 3 (vô lí).

2. 5 số này khi chia cho 3 chỉ còn 2 loại số dư mà thôi.

Khi đó, theo nguyên lí Dirichlet thì tồn tại 3 số cùng số dư khi chia cho 3. Tổng 3 số này chia hết cho 3 (vô lí nốt).

Vậy điều giả sử là sai.

Bình luận (0)
HL
Xem chi tiết
NC
Xem chi tiết
TH
27 tháng 9 2015 lúc 17:37

Vì p là số nguyên tố lẻ nên p>1.ĐKXĐ m,n khác 0.

Ta có: \(\frac{1}{p}=\frac{1}{m^2}+\frac{1}{n^2}\Leftrightarrow\)\(\frac{1}{p}=\left(\frac{m^2+n^2}{m^2n^2}\right)\Leftrightarrow\)\(\left(m^2+n^2\right)p=m^2n^2\)   \(\left(1\right)\)

\(\Leftrightarrow m^2n^2-m^2p-n^2p+p^2=p^2\Leftrightarrow\left(m^2-p\right)\left(n^2-p\right)=p^2\)  \(\left(2\right)\)

Từ (1) ta được m hoặc n chia hết p.Giả sử m chia hết cho p. Đặt m2=a2p2 ( a khác 0) nên (2) \(\Leftrightarrow\)  \(\left(a^2p^2-p\right)\left(n^2-p\right)=p^2\)

\(\Leftrightarrow\left(a^2p-1\right)\left(n^2-p\right)=p\)

Vì a khác 0 nên a2>0 a2p chia hết p . Vì p>2 nên a2p-1 không chia hết cho p.

Vậy n2-p chia hết cho p nên n chia hết cho p . Đặt n=bp.

Dựa pt đầu ta có \(\frac{1}{p}=\frac{1}{a^2p^2}+\frac{1}{b^2p^2}\Leftrightarrow1=\frac{1}{a^2p}+\frac{1}{b^2p}\)

nên a2p=2 và b2p=2 nên vô lý

Bình luận (0)
LT
Xem chi tiết