Cho tổng S = 1 + 3 + 5 + ... + 2015 + 2017
Chứng minh S là một số chính phương
Câu hỏi 1: Chứng minh số 2016201720162017 là hợp số
Câu hỏi 2: Cho tổng S :1+3+5+...+2015+2017
Chứng tỏ S là một số chính phương
Cho tổng S=1+3+5+...+2015+2017
Chứng tỏ S là một số chính phương.
Ta thấy S có các số hạng cách đều 2 đơn vị
=> S có: (2017 - 1) : 2 +1 = 1009 ( số hạng)
=> S = (2017 + 1) x 1009 : 2 = (2018 : 2) x 1009= 1009 x 1009 = 10092
Vì 1009 là số nguyên => 10092 là số chính phương => S là số chính phương(điều phải chứng minh)
Cho tổng: S = 1 + 3 + 5 + ... + 2011 + 2013 . chứng minh tổng S là một số chính phương
S = 1 + 3 + 5 +...+ 2011 + 2013
Số số hạng của S là
(2013 - 1) : 2 + 1 = 1007 (số hạng)
TBC của dãy số trên là
(2013 + 1) : 2 = 1007
Tổng S là
1007 . 1007 = 10072
Vậy tổng S là một số chính phương
cho tổng s = 1+3+5+7+9+...+2009+2011
chứng minh s là một số chính phương
Theo công thức tính tổng S = 1+2+3+...+n = [n.(n+1)] : 2
Suy ra : S = 1+3+5+...+2011=1+2+3+...+2010+2011 - (2+4+6+...+2010)
= 1+2+3+...+2010+2011-2(1+2+3+...+1005)
= 2011 x 2012:2 - 2(1005.1006:2)= 1012036
Mà : 1012036 có chữ số tận cùng = 6 và 1012036 = 2\(^2\).503\(^2\)(số mũ chẵn), 1012036 = 1006\(^2\)
Suy ra : 1012036 là số chính phương.
so sanh
3210 và 2350
cho tổng s = 1+3+5+7+9+...+2009+2011
a Tính s
chứng minh s là một số chính phương
Cho tổng s = 1 + 3 + 5 + 7 + 9 + ... + 2009 + 2011
Bài làm
Số các số là :
( 2011 - 1 ) : 2 + 1 = 1006
Tổng s là :
( 2011 + 1 ) . 1006 : 2 = 1012036
Đáp số : 1012036
so sanh
3210 và 2350
cho tổng s = 1+3+5+7+9+...+2009+2011
a Tính s
chứng minh s là một số chính phương
a) \(S=1+3+5+7+...+2009+2011\)
\(S=\left(\frac{2011+1}{2}\right).\left(\frac{2011-1}{2}+1\right)=1006^2=1012036\)
b) Ta có: \(S=2^2.503^2=1006^2\)
Mà S có tận cùng là 6 => S là số chính phương
Ta có: \(3^{210}=\left(3^3\right)^{70}=27^{70}\)
\(2^{350}=\left(2^5\right)^{70}=32^{70}\)
Vì 27 < 32 nên \(27^{70}>32^{70}\)
Vậy \(3^{210}>2^{350}\)
1.
a. Tìm tất cả các số nguyên tố p sao cho p2+2p cũng là số nguyên tố.
b. Cho tổng: S = 1+3+5+...+2009+2011. Chứng minh S là một số chính phương.
Chứng minh rằng tổng S = 1+3+5+...+(2n+1) là số chính phương với mọi n là số tự nhiên
\(S=\left[\left(2n+1-1\right):2+1\right]\times\left(2n+1+1\right):2\)
\(S=\left(n+1\right)\times\left(2n+2\right):2\)
\(S=\left(n+1\right)\times\left(n+1\right)\)
\(S=\left(n+1\right)^2\)( dpcm )
Xin lỗi đợi tao một lát nữa đi.
Cho S = 1 + 3 + 5 + ...... + 2015 + 2017.
Phát biểu nào dưới đây là đúng: