Những câu hỏi liên quan
NT
Xem chi tiết
DH
8 tháng 5 2018 lúc 17:16

\(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=0\Rightarrow\frac{1}{x}+\frac{1}{y}=-\frac{1}{z};\frac{1}{x}+\frac{1}{z}=-\frac{1}{y};\frac{1}{y}+\frac{1}{z}=-\frac{1}{x}\)

\(A=\frac{y+z}{x}+\frac{x+z}{y}+\frac{x+y}{z}=\frac{y}{x}+\frac{z}{x}+\frac{x}{y}+\frac{z}{y}+\frac{x}{z}+\frac{y}{z}\)

\(=\left(\frac{y}{x}+\frac{y}{z}\right)+\left(\frac{x}{y}+\frac{x}{z}\right)+\left(\frac{z}{x}+\frac{z}{y}\right)=y\left(\frac{1}{x}+\frac{1}{z}\right)+x\left(\frac{1}{y}+\frac{1}{z}\right)+z\left(\frac{1}{x}+\frac{1}{y}\right)\)

\(=y\cdot-\frac{1}{y}+x\cdot-\frac{1}{x}+z\cdot-\frac{1}{z}=-1-1-1=-3\)

vậy A=-3

Bình luận (0)
TT
Xem chi tiết
H24
Xem chi tiết
DT
Xem chi tiết
LL
Xem chi tiết
NT
Xem chi tiết
H24
22 tháng 9 2020 lúc 10:56

2) \(\hept{\begin{cases}^{x^2-xy=y^2-yz}\left(1\right)\\^{y^2-yz=z^2-zx}\left(2\right)\\^{z^2-zx=x^2-xy}\left(3\right)\end{cases}}\)

lấy (2) - (1) suy ra\(2yz=2y^2+xy+xz-x^2-z^2\)

lấy (3) - (1) suy ra \(2xy=zx+yz-z^2+2x^2-y^2\) 

lấy (3) - (2) suy ra \(2zx=xy+yz+2z^2-x^2-y^2\)

cộng lại đc \(yz+xz+xy=0\) do đó \(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=\frac{yz+xz+xy}{xyz}=0\)

Bình luận (0)
 Khách vãng lai đã xóa
H24
22 tháng 9 2020 lúc 10:39

1) \(a=x^2-xy=x\left(x-y\right)\ne0\left(x\ne0,x\ne y\right)\)

Bình luận (0)
 Khách vãng lai đã xóa
NT
22 tháng 9 2020 lúc 12:50

mik cần c3 , ai làm giúp mik đc ko 

Bình luận (0)
 Khách vãng lai đã xóa
PK
Xem chi tiết
PN
Xem chi tiết
NB
Xem chi tiết
DD
31 tháng 3 2015 lúc 19:22

x-y-z=0

=> x=y+z

     y=x-z

    -z=y-x

B=(1-z/x)(1-x/y)(1+y/z)

B=((x-z)/x)((y-x)/y)((z+y)/z)

B=(y/x)(-z/y)(x/z)

B=(-z.y.x)/(x.y.z)

B=-1

Bình luận (0)
NT
22 tháng 4 2016 lúc 20:49

thank ban nha

Bình luận (0)
TA
26 tháng 11 2016 lúc 20:59

B=-1    ^_^

Bình luận (0)