Những câu hỏi liên quan
TL
Xem chi tiết
AC
Xem chi tiết
AN
17 tháng 6 2017 lúc 14:23

\(M=a^2+ab+b^2-3a-3b+2001\)

\(\Rightarrow2M=2a^2+2ab+2b^2-6a-6b+4002\)

\(=\left(a^2+2ab+b^2\right)-4\left(a+b\right)+4+\left(a^2-2a+1\right)+\left(b^2-2b+1\right)+3996\)

\(=\left(a+b-2\right)^2+\left(a-1\right)^2+\left(b-1\right)^2+3996\ge3996\)

\(\Rightarrow M\ge1998\)

Bình luận (0)
EC
Xem chi tiết
CH
21 tháng 10 2016 lúc 9:28

Với các bài toán tìm max, min 2 biến kiểu như thế này, em hay cố gắng nhân M lên n lần để tạo thêm được các số hạng, sang đó ghép tạo thành các bình phương.

Cách làm như sau:

\(4M=4a^2+4ab+4b^2-12a-12b+8004\)

\(=\left(4a^2+4ab+b^2\right)-6\left(2a+b\right)+3\left(b^2-2b\right)+8004\)

\(=\left(2a+b\right)^2-6\left(2a+b\right)+9+3\left(b^2-2b+1\right)+7992\)

\(=\left(2a+b-3\right)^2+3\left(b-1\right)^2+7992\ge7992\)

Vậy 4M min = 7992, vây M min = 1998.

Vậy min M = 1998 khi \(\hept{\begin{cases}b-1=0\\2a+b-3=0\end{cases}}\Rightarrow\hept{\begin{cases}b=1\\a=1\end{cases}}\)

Bình luận (0)
HA
Xem chi tiết
EC
21 tháng 10 2016 lúc 8:44

Cho biểu thức M = a2 + ab + b2 – 3a – 3b + 2001. Với giá trị nào của a và b thì M đạt giá trị nhỏ nhất? Tìm giá trị nhỏ nhất đó.

Bình luận (0)
H24
Xem chi tiết
AH
29 tháng 6 2023 lúc 13:19

Lời giải:
Gọi biểu thức trên là $A$

$4A=4a^2+4ab+4b^2-12a-12b+8064$

$=(4a^2+4ab+b^2)+3b^2-12a-12b+8064$

$=(2a+b)^2-6(2a+b)+(3b^2-6b)+8064$

$=(2a+b)^2-6(2a+b)+9+3(b^2-2b+1)+8052$

$=(2a+b-3)^2+3(b-1)^2+8052\geq 8052$

$\Rightarrow A\geq 2013$

Vậy $A_{\min}=2013$

Bình luận (0)
LH
Xem chi tiết
LN
17 tháng 12 2018 lúc 22:20

Bài này dễ mà bạn

Bình luận (0)
LH
17 tháng 12 2018 lúc 22:22

dễ thì bn giải hộ mk đi,nói đc lm đc nhỉ

Bình luận (0)
ZZ
Xem chi tiết
H24
Xem chi tiết
LL
17 tháng 9 2021 lúc 9:10

\(M=a^2+ab+b^2-3a-3b+2001\)

\(\Rightarrow2M=2a^2+2ab+2b^2-6a-6b+4002\)

\(=\left[\left(a+b\right)^2-2\left(a+b\right).2+4\right]+\left(a^2-2a+1\right)+\left(b^2-2b+1\right)+3996\)

\(=\left(a+b-2\right)^2+\left(a-1\right)^2+\left(b-1\right)^2+3996\ge3996\)

\(\Rightarrow M\ge1998\)

\(minM=1998\Leftrightarrow a=b=1\)

Bình luận (1)
NL
Xem chi tiết
H24
8 tháng 1 2017 lúc 18:04

\(\left(a^2+\frac{b^2}{4}+\frac{9}{4}+ab-3a-\frac{3}{2}b\right)+\frac{3}{4}\left(b^2-2b+1\right)-\frac{9}{4}-\frac{3}{4}+2013\\ \)

\(\left(a+\frac{b-3}{2}\right)^2+\frac{3}{4}\left(b-1\right)^2+2013-3\)

GTNN=2010

Khi b=1 và a= 1

Bình luận (0)
HH
29 tháng 10 2018 lúc 20:32

Hóa ra OLM vẫn còn ADMIN

Bình luận (0)