Những câu hỏi liên quan
NB
Xem chi tiết
QA
25 tháng 2 2016 lúc 12:50

bài 1: 
Ta có:

1+2+3+...+2005≡(2005+1).2005:2≡2006.2005:2

≡1003.2005≡3.1≡3

(mod 4)

Vậy tổng của các số từ 1 đến 2005 có dạng 4k+3 (k∈N) nên không là số chính phương (đpcm) 

Đây là toán lớp 7 mạ 

Bình luận (0)
NT
25 tháng 2 2016 lúc 13:12

so chinh phuong la so gi

Bình luận (0)
H24
Xem chi tiết
TN
29 tháng 3 2015 lúc 11:01

Ta có:

1+2+3+...+2005≡(2005+1).2005:2≡2006.2005:2

 

≡1003.2005≡3.1≡3

(mod 4)

Vậy tổng của các số từ 1 đến 2005 có dạng 4k+3 (kN) nên không là số chính phương (đpcm) 

Bình luận (0)
NB
Xem chi tiết
KA
Xem chi tiết
TN
Xem chi tiết
DK
Xem chi tiết
N1
30 tháng 11 2017 lúc 22:19

Ta có:

1+2+3+...+2005=(2005+1).2005:2≡2006.2005:2

≡1003.2005≡3.1≡3

(mod 4)

Vậy tổng của các số từ 1 đến 2005 có dạng 4k+3 (k thuộc N) nên không là số chính phương (đpcm).

Bình luận (0)
N1
30 tháng 11 2017 lúc 21:32

ở câu hỏi tương tự đó!

Bình luận (0)
DK
30 tháng 11 2017 lúc 22:02

Không có giúp mình với

Bình luận (0)
H24
Xem chi tiết
NN
Xem chi tiết
AH
15 tháng 2 2021 lúc 23:41

Lời giải:Gọi tổng bình phương của 5 số tự nhiên liên tiếp là:

$T=a^2+(a+1)^2+(a+2)^2+(a+3)^2+(a+4)^2$

$T=5a^2+20a+30=5(a^2+4a+6)=5[(a+2)^2+2]$

Vì $(a+2)^2$ là scp nên chia 5 dư $0,1,4$. Do đó $(a+2)^2+2$ chia $5$ dư $1,2,3$

$\Rightarrow T$ chia hết cho $5$ nhưng không chia hết cho $25$ nên $T$ không phải là scp.

Ta có đpcm.

Bình luận (0)
LH
Xem chi tiết