Tính
a. 3/(3x5) + 3/(5x7) + 3/(7x9) +... + 3/(99x101)
b. 5/(3x5) +5/(5x7) +5/(7x9) +...+ 5/(99x101)
1x3/3x5 + 2x4/5x7 + 3x5/7x9 + ............... +49x51/99x101
1x3/3x5 + 2x3/5x7 + 3x5/7x9 + ............... +49x51/99x101
Bài 1 Tính
a) A=1/2x3+1/3x4+1/4x5+1/5x6+...+1/99x100
b) B=2/3x5+2/5x7+2/7x9+...+2/99x101
c) C=3/3x5+3/5x7+3/7x9+...+3/99x101
d) D=4/3x8+4/8x13+4/13x8+...+4/53x58
Các bạn làm hộ giúp mình với cho mình lời giải
B=2/3x5 + 2/5x7 + 2/7x9 + ...+2/99x101
B= 1/3 - 1/5 + 1/5 - 1/7 + 1/7 -1/9 + ... + 1/99 - 1/101
B= 1/3 - 1/101
B=98/303
( k mk nhé ! Cách làm câu a và b của mk đều đúng 100% đấy ! Dạng này mk học từ lâu rồi ! )
a, A = 1/2x3+ 1/ 3x4 + 1/4x5 + 1/5x6 + ... + 1/99x100
A= 1/2 - 1/3 + 1/3 - 1/4 + 1/4 -1/5 + 1/5 - 1/6 + ... + 1/99 -1/100
A= 1/2 -1/100
A= 49 / 100
nhờ bạn giải dùm mình câu c,d
1/3x5+1/5x7+1/7x9+........+1/99x101
Đặt A = 1/3.5 + 1/5.7 + 1/7.9 + ..... + 1/99.101
=> 2A = 2/3.5 + 2/5.7 + 2/7.9 + ..... + 2/99.101
=> 2A = 1/3 - 1/5 + 1/5 - 1/7 + ..... + 1/99 - 1/101
=> 2A = 1/3 - 1/101
=> 2A = 88/303
=> A = 44/303
1/3x5 + 1/5x7 + 1/7x9 +...+ 1/99x101
1/1x3+1/3X5+1/5X7+1/7X9+…+1/99X101
\(\frac{1}{1.3}+\frac{1}{3.5}+\frac{1}{5.7}+\frac{1}{7.9}+...+\frac{1}{99.101}\)
\(=\frac{1}{2}.\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-\frac{1}{9}+...+\frac{1}{99}-\frac{1}{101}\right)\)
\(=\frac{1}{2}.\left(1-\frac{1}{101}\right)\)
\(=\frac{1}{2}.\frac{100}{101}\)
\(=\frac{50}{101}\)
\(\frac{1}{1\cdot3}+\frac{1}{3\cdot5}+...+\frac{1}{99\cdot101}\)
\(=2\left(\frac{1}{1\cdot3}+\frac{1}{3\cdot5}+...+\frac{1}{99\cdot101}\right)\)
\(=\frac{2}{1\cdot3}+\frac{2}{3\cdot5}+...+\frac{2}{99\cdot101}\)
\(=\frac{1}{1}-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+...+\frac{1}{99}-\frac{1}{101}\)
\(=\frac{1}{1}-\frac{1}{101}=\frac{101}{101}-\frac{1}{101}=\frac{100}{101}\)
Tính : B = 2/1x3 + 2/3x5 + 2/5x7 + 2/7x9 + ..... + 2/99x101
\(B=\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+\frac{2}{7.9}+...+\frac{2}{99.101}\)
\(\Rightarrow B=1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{99}-\frac{1}{101}\)
\(\Rightarrow B=1-\frac{1}{101}=\frac{101}{101}-\frac{1}{101}=\frac{100}{101}\)
_Học tốt_
\(\frac{2}{1\times3}+\frac{2}{3\times5}+\frac{2}{5\times7}+....+\frac{2}{99\times101}\)
\(=\frac{3-1}{1\times3}+\frac{5-3}{3\times5}+\frac{7-5}{5\times7}+....+\frac{101-99}{99\times101}\)
\(=\frac{3}{1\times3}-\frac{1}{1\times3}+\frac{5}{3\times5}-\frac{3}{3\times5}+....+\frac{101}{99\times101}-\frac{99}{99\times101}\)
\(=1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+...+\frac{1}{99}-\frac{1}{101}\)
\(=1-\frac{1}{101}=\frac{100}{101}\)
\(B=\dfrac{3}{3x5}+\dfrac{3}{5x7}+\dfrac{3}{7x9}+....+\dfrac{3}{48x50}\)Tính nhanh:
\(B=\dfrac{3}{3x5}+\dfrac{3}{5x7}+\dfrac{3}{7x9}+....+\dfrac{3}{48x50}\)
\(B=\dfrac{3}{3x5}+\dfrac{3}{5x7}+\dfrac{3}{7x9}+....+\dfrac{3}{48x50}\)
\(B=\dfrac{3}{3x5}+\dfrac{3}{5x7}+\dfrac{3}{7x9}+....+\dfrac{3}{48x50}\)
Giải:
\(B=\dfrac{3}{3\times5}+\dfrac{3}{5\times7}+\dfrac{3}{7\times9}+...+\dfrac{3}{48\times50}\)
\(B=\dfrac{3}{2}\times\left(\dfrac{2}{3\times5}+\dfrac{2}{5\times7}+\dfrac{2}{7\times9}+...+\dfrac{2}{48\times50}\right)\)
\(B=\dfrac{3}{2}\times\left(\dfrac{1}{3}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{7}+\dfrac{1}{7}-\dfrac{1}{9}+...+\dfrac{1}{48}-\dfrac{1}{50}\right)\)
\(B=\dfrac{3}{2}\times\left(\dfrac{1}{3}-\dfrac{1}{50}\right)\)
\(B=\dfrac{3}{2}\times\dfrac{47}{150}\)
\(B=\dfrac{47}{100}\)
Chúc em học tốt!
\(\frac{2}{3x5}+\frac{2}{5x7}+\frac{2}{7x9}+....+\frac{2}{99x101}\)
\(\frac{2}{3\cdot5}+\frac{2}{5\cdot7}+\frac{2}{7\cdot9}+...+\frac{2}{99\cdot101}\)
\(=\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-\frac{1}{9}+...+\frac{1}{99}-\frac{1}{101}\)
\(=\frac{1}{3}-\frac{1}{101}\)
\(=\frac{98}{303}\)
Tích mk nha bn !!!! ^_^