1. Cho A = 1/2 . 3/4 . 5/6 .....99/100
Chứng minh A^2 < 1/101
1. Cho A = 1/2 . 3/4 . 5/6 .....99/100
Chứng minh A^2 < 1/101
cho A =1/2*3/4*5/6*...*99/100
B=2/3*4/5*6/7*...*100/101
C=1/2*2/3*4/5*...*98/99
a) so sanh A, B, C
b) Chung minh: A*C< A^2< 1/10
c) Chung minh: 1/15< A< 1/10
Lam giup minh di ai lam duoc minh tich dung cho
Cho A= 1/2 . 3/4 . 5/6 . ......... . 99/100
B= 2/3 . 4/5 . ......... . 100/101
Chung minh A<B
Cho A = (1:2).(3:4).(5:60) ..... (99:100)
Cho B = (2:3).(4:5).(6:7) ..... (100:101)
Chứng minh A<B
Tính tích A , B
Chứng minh A < 1:10
a, ta xét:
\(\frac{1}{2}< \frac{2}{3}\)
\(\frac{3}{4}< \frac{4}{5}\)
\(\frac{5}{6}< \frac{6}{7}\)
.....
\(\frac{99}{100}< \frac{100}{101}\)
=>\(\frac{1}{2}.\frac{3}{4}.\frac{5}{6}.....\frac{99}{100}< \frac{2}{3}.\frac{4}{5}.\frac{6}{7}.....\frac{100}{101}\)
hay:A<B(đpcm)
b,\(A.B=\frac{1}{2}.\frac{3}{4}.....\frac{99}{100}.\frac{2}{3}.\frac{4}{5}.....\frac{100}{101}\)
\(=\frac{1.2.3....100}{2.3.4....101}=\frac{1}{101}\)
c,vì A<B (theo phần a)
=>A.A<B.A
Mà B.A=\(\frac{1}{101}\)
=>A2<101
Mà A2=\(\left(\frac{1}{2}.\frac{3}{4}.....\frac{99}{100}\right)^2\)
=>\(\left(\frac{1}{2}.\frac{3}{4}.....\frac{99}{100}\right)^2\)<\(\frac{1}{101}\)<\(\frac{1}{100}=\frac{1}{10^2}\)
=>\(\left(\frac{1}{2}.\frac{3}{4}.....\frac{99}{100}\right)^2\)<\(\frac{1}{10^2}\)
=>\(\frac{1}{2}.\frac{3}{4}....\frac{99}{100}< \frac{1}{10}\)
Hay A<\(\frac{1}{10}\)
A = 1-2+3-4+5-6+.....+97-98+99-100+101
B = 1+2-3-4+5+6-7-8+......+98-99-100+101
B=1+2-(3+4)+5+6-..-100+101
B=(3+11+19+...+195)-(7+15+...+199)+101
B=25.99-25.103+101
B=-100+101=1
Vậy B=1
a=151
B=1 nha
bài 1
A=1*2*3+2*3*4+3*4*5+...+99*100*101
B=1*3*5+3*5*7+...+95*97*99
C=2*4+4*6+..+98*100
D=1*2+3*4+5*6+...+99*100
E=1^2+2^2+3^2+...+100^2
G=1*3+2*4+3*5+4*6+...+99*101+100*102
H=1*2^2+2*3^2+3*4^2+...+99*100^2
I=1*2*3+3*4*5+5*6*7+7*8*9+...+98*99*100
K=1^2+3^2+5^2+...+99^2
A = 1*2*3 + 2*3*4 + 3*4*5 ... + 99*100*101
=> 4A = 1*2*3*4 + 2*3*4*4 + 3*4*5*4 + ... +99*100*101*4
=> 4A = 1*2*3*4 + 2*3*4*(5 - 1) + 3*4*5*( 6 - 2) + ... + 99*100*101*(102 - 98)
=> 4A = 1*2*3*4 + 2*3*4*5 - 1*2*3*4 + 3*4*5*6 - 2*3*4*5 + ... + 99*100*101*102 - 98*99*100*101
=> 4A = 99*100*101*102
=> 4A = 101989800
=> A = 25497450
Cho M= 1/2 . 3/4. 5/6.....99/100 & N= 2/3. 4/5. 6/7....100/101
a. Chứng minh M < N
b. Tìm tích M . N
c.Chứng minh M < 1/ 10
a, Xét 1/2 < 2/3 ; 3/4<4/5 ; ............ ; 99/100<100/101
=> 1/2.3/4.......99/100 < 2/3.4/5.........100/101
=> M<N
b, M.N = 1/2.3/4.4/5......99/100.2/3.4/5.5/6......100/101
M.N = 1/2.2/3.3/4.4/5.............99/100.100/101
M.N = 1/101
c, Vì M<N nên M.M < M.N Hay M.M < 1/101 < 1/100
hay M.M < 1/10 . 1/10
=> M < 1/10 (Đpcm)
a) Ta có M.N = 1/2.2/3.3/4.4/5....99/10.10/101 = 1/101
b) Xét M và N đều gồm 50 thừa số mà:
1/2 < 2/3
3/4 < 4/5
.............
99/100 < 100/101
=> M < N
c) Do M < N nên => M.M < M.N (Nhân 2 vế với M)
=> M.M < 1/101 (Vì M.N = 1/101 theo cma)
Mặt khác 1/101 < 1/100
=> M.M < 1/100 = 1/10.1/10
=> M < 1/10
a) Mỗi biểu thức M, N đều có 50 thừa số.
Dễ thấy \(\frac{1}{2}< \frac{2}{3}\);\(\frac{3}{4}< \frac{4}{5}\); ... \(\frac{99}{100}< \frac{100}{101}\)nên M < N
b) M.N = \(\left(\frac{1}{2}.\frac{3}{4}.\frac{5}{6}...\frac{99}{100}\right).\left(\frac{2}{3}.\frac{4}{5}.\frac{6}{7}...\frac{100}{101}\right)\)=\(\frac{1}{2}.\frac{2}{3}.\frac{3}{4}.\frac{4}{5}.\frac{5}{6}.\frac{6}{7}...\frac{99}{100}.\frac{100}{101}\)=\(\frac{1}{101}\)
c) Vì M < N nên M.M < M.N hay M.M < \(\frac{1}{101}\)<\(\frac{1}{100}\)do đó M.M < \(\frac{1}{10}.\frac{1}{10}\)
Cho M=1/2. 3/4 .5/6 . ..........99/100; N=2/3 . 4/5 . 6.7. .......100/101
a)chứng minh M<N
b)tìm tích M.N
c)chứng minh M<1/10
a) A= 1+(-2)+(-3)+4+5(-6)+(-7)+8+9+...+99+100-101+102+103
b) B=1+(-3)+5+(-7)+...+57+(-99)+101