Những câu hỏi liên quan
TN
Xem chi tiết
TC
Xem chi tiết

\(A=\frac{2015}{2016}+\frac{2016}{2017}+\frac{2017}{2018}+\frac{2018}{2015}\)

\(=\left(1-\frac{1}{2016}\right)+\left(1-\frac{1}{2017}\right)+\left(1-\frac{1}{2018}\right)+\left(1+\frac{3}{2015}\right)\)

\(=1-\frac{1}{2016}+1-\frac{1}{2017}+1-\frac{1}{2018}+1+\frac{1}{2015}+\frac{1}{2015}+\frac{1}{2015}\)

\(=\left(1+1+1+1\right)+\left(\left(\frac{1}{2015}-\frac{1}{2016}\right)+\left(\frac{1}{2015}-\frac{1}{2017}\right)+\left(\frac{1}{2015}-\frac{1}{2018}\right)\right)\)

\(=4+\left(\frac{1}{2015}-\frac{1}{2016}\right)+\left(\frac{1}{2015}-\frac{1}{2017}\right)+\left(\frac{1}{2015}-\frac{1}{2018}\right)\)

Vì \(\frac{1}{2015}>\frac{1}{2016};\frac{1}{2015}>\frac{1}{2017};\frac{1}{2015}>\frac{1}{2018}\)

\(\Rightarrow\frac{1}{2015}-\frac{1}{2016}>0;\frac{1}{2015}-\frac{1}{2017}>0;\frac{1}{2015}-\frac{1}{2018}>0\)

\(\Rightarrow\left(\frac{1}{2015}-\frac{1}{2016}\right)+\left(\frac{1}{2015}-\frac{1}{2017}\right)+\left(\frac{1}{2015}-\frac{1}{2018}\right)>0\)

\(\Rightarrow4+\left(\frac{1}{2015}-\frac{1}{2016}\right)+\left(\frac{1}{2015}-\frac{1}{2017}\right)+\left(\frac{1}{2015}-\frac{1}{2018}\right)>4\)

\(\Rightarrow A>4\left(dpcm\right)\)

Bình luận (0)
LB
Xem chi tiết
TD
Xem chi tiết
PQ
24 tháng 4 2019 lúc 10:03

\(A=\frac{2015}{2016}+\frac{2016}{2017}+\frac{2017}{2018}+\frac{2018}{2015}\)

\(A=1-\frac{1}{2016}+1-\frac{1}{2017}+1-\frac{1}{2018}+1+\frac{3}{2015}\)

\(A=4-\left(\frac{1}{2016}+\frac{1}{2017}+\frac{1}{2018}-\frac{3}{2015}\right)\)

Xét : 

\(\frac{1}{2016}< \frac{1}{2015}\)\(;\)\(\frac{1}{2017}< \frac{1}{2015}\)\(;\)\(\frac{1}{2018}< \frac{1}{2015}\)

\(\Rightarrow\)\(\frac{1}{2016}+\frac{1}{2017}+\frac{1}{2018}< \frac{1}{2015}+\frac{1}{2015}+\frac{1}{2015}\)

\(\Leftrightarrow\)\(\frac{1}{2016}+\frac{1}{2017}+\frac{1}{2018}-\frac{3}{2015}< 0\)

Suy ra : \(A=4-\left(\frac{1}{2016}+\frac{1}{2017}+\frac{1}{2018}-\frac{3}{2015}\right)>4-0=4\) ( đpcm ) 

... 

Bình luận (0)
TN
Xem chi tiết
TQ
Xem chi tiết
YY
19 tháng 4 2018 lúc 19:03

\(A=\frac{2015}{2016}+\frac{2016}{2017}+\frac{2017}{2018}+\frac{2018}{2015}\)

\(=\frac{2016-1}{2016}+\frac{2017-1}{2017}+\frac{2018-1}{2018}+\frac{2015+3}{2015}\)

\(=1-\frac{1}{2016}+1-\frac{1}{2017}+1-\frac{1}{2018}+1+\frac{3}{2015}\)

\(=4+\frac{1}{2015}-\frac{1}{2016}+\frac{1}{2015}-\frac{1}{2017}+\frac{1}{2015}-\frac{1}{2018}\)

mà \(\frac{1}{2015}>\frac{1}{2016};\frac{1}{2017};\frac{1}{2018}\)

\(\Rightarrow A>4\)

Bình luận (0)
TN
Xem chi tiết
NT
Xem chi tiết
PK
Xem chi tiết
TX
29 tháng 3 2019 lúc 22:39

Sai đề bạn ơi, A>4 không thể xảy ra

Bình luận (1)