A=4^2015+4^2016+4^2017+4^2018. chung minh rang tong A chia hết cho 5
a. So sanh 2 phan so:A= 2015/2016+2016/2017+2017/2018 va B = 2015+2016+2017/2016+2017+2018
b.1/2.4+1/4.6+........+1/(2x-2).2x = 1/8
c.Cho A = 1/4+1/9+1/16+...+1/81+1/100 . Chung minh rang : A > 65/132
d.Cho B = 12/(2 . 4 ) ^ 2 + 20/ (4 . 6) ^2 + ...........+ 388/ ( 96 . 98 ) ^ 2 + 396/ ( 98 . 100 ) ^2 .Hay so sanh B voi 1 /4
cho A = 2015/2016 + 2016/2017 + 2017/2018 + 2018/2015. Chứng minh A>4
\(A=\frac{2015}{2016}+\frac{2016}{2017}+\frac{2017}{2018}+\frac{2018}{2015}\)
\(=\left(1-\frac{1}{2016}\right)+\left(1-\frac{1}{2017}\right)+\left(1-\frac{1}{2018}\right)+\left(1+\frac{3}{2015}\right)\)
\(=1-\frac{1}{2016}+1-\frac{1}{2017}+1-\frac{1}{2018}+1+\frac{1}{2015}+\frac{1}{2015}+\frac{1}{2015}\)
\(=\left(1+1+1+1\right)+\left(\left(\frac{1}{2015}-\frac{1}{2016}\right)+\left(\frac{1}{2015}-\frac{1}{2017}\right)+\left(\frac{1}{2015}-\frac{1}{2018}\right)\right)\)
\(=4+\left(\frac{1}{2015}-\frac{1}{2016}\right)+\left(\frac{1}{2015}-\frac{1}{2017}\right)+\left(\frac{1}{2015}-\frac{1}{2018}\right)\)
Vì \(\frac{1}{2015}>\frac{1}{2016};\frac{1}{2015}>\frac{1}{2017};\frac{1}{2015}>\frac{1}{2018}\)
\(\Rightarrow\frac{1}{2015}-\frac{1}{2016}>0;\frac{1}{2015}-\frac{1}{2017}>0;\frac{1}{2015}-\frac{1}{2018}>0\)
\(\Rightarrow\left(\frac{1}{2015}-\frac{1}{2016}\right)+\left(\frac{1}{2015}-\frac{1}{2017}\right)+\left(\frac{1}{2015}-\frac{1}{2018}\right)>0\)
\(\Rightarrow4+\left(\frac{1}{2015}-\frac{1}{2016}\right)+\left(\frac{1}{2015}-\frac{1}{2017}\right)+\left(\frac{1}{2015}-\frac{1}{2018}\right)>4\)
\(\Rightarrow A>4\left(dpcm\right)\)
Cho A = 2015/2016+2016/2017+2017/2018+2018/2015
Chứng minh A>4
cho A= 2015/2016 +2016/2017 +2017/2018 +2018/2015. Chứng minh A > 4.
mong các bạn giúp đỡ
\(A=\frac{2015}{2016}+\frac{2016}{2017}+\frac{2017}{2018}+\frac{2018}{2015}\)
\(A=1-\frac{1}{2016}+1-\frac{1}{2017}+1-\frac{1}{2018}+1+\frac{3}{2015}\)
\(A=4-\left(\frac{1}{2016}+\frac{1}{2017}+\frac{1}{2018}-\frac{3}{2015}\right)\)
Xét :
\(\frac{1}{2016}< \frac{1}{2015}\)\(;\)\(\frac{1}{2017}< \frac{1}{2015}\)\(;\)\(\frac{1}{2018}< \frac{1}{2015}\)
\(\Rightarrow\)\(\frac{1}{2016}+\frac{1}{2017}+\frac{1}{2018}< \frac{1}{2015}+\frac{1}{2015}+\frac{1}{2015}\)
\(\Leftrightarrow\)\(\frac{1}{2016}+\frac{1}{2017}+\frac{1}{2018}-\frac{3}{2015}< 0\)
Suy ra : \(A=4-\left(\frac{1}{2016}+\frac{1}{2017}+\frac{1}{2018}-\frac{3}{2015}\right)>4-0=4\) ( đpcm )
...
Tính :A= [(2018/1)+(2017/2)+(2016/3)+(2015/4)+...+(4/2015)+(3/2016)+(2/2017)+(1/2018)]/[(2019/2)+(2019/3)+(2019/4)+(2019/5)+...+(2019/2015)+(2019/2016)+(2019/2017)+(2019/2018)+(2019/2019)]
ai giúp minh giải bài này với ạ:
A=2015/2016+2016/2017+2017/2018+2018/2015
hãy chứng minh rằng A>4
\(A=\frac{2015}{2016}+\frac{2016}{2017}+\frac{2017}{2018}+\frac{2018}{2015}\)
\(=\frac{2016-1}{2016}+\frac{2017-1}{2017}+\frac{2018-1}{2018}+\frac{2015+3}{2015}\)
\(=1-\frac{1}{2016}+1-\frac{1}{2017}+1-\frac{1}{2018}+1+\frac{3}{2015}\)
\(=4+\frac{1}{2015}-\frac{1}{2016}+\frac{1}{2015}-\frac{1}{2017}+\frac{1}{2015}-\frac{1}{2018}\)
mà \(\frac{1}{2015}>\frac{1}{2016};\frac{1}{2017};\frac{1}{2018}\)
\(\Rightarrow A>4\)
Tính :A= [(2018/1)+(2017/2)+(2016/3)+(2015/4)+...+(4/2015)+(3/2016)+(2/2017)+(1/2018)]/[(2019/1)+(2019/2)+(2019/3)+(2019/4)+...+(2019/2015)+(2019/2016)+(2019/2017)+(2019/2018)+(2019/2019)]
Chung minh rang: 41^2015+2017^2016+2016^2017+8001^2018 khong phai la so chinh phuong
cho A=\(\frac{2015}{2016}\)+\(\frac{2016}{2017}\)+\(\frac{2017}{2018}\)+\(\frac{2018}{2015}\) chứng minh A>4
Sai đề bạn ơi, A>4 không thể xảy ra