Những câu hỏi liên quan
SC
Xem chi tiết
SC
Xem chi tiết
TD
18 tháng 12 2016 lúc 11:20

Đây là bài giải pt bậc 2 có tham số. Ta đặt \(b\) là tham số chẳng hạn.

Pt trở thành \(\frac{a+b}{a^2-ab+b^2}=\frac{8}{73}\) hay \(8a^2-8ab+8b^2=73a+73b\)

Viết lại pt dưới dạng biến số \(a\):

\(8a^2-\left(8b+73\right)a+\left(8b^2-73b\right)=0\)(ôi sao mà nó xấu thế!)

Tới đây thì giải pt bậc 2 này, chắc là xấu lắm nhưng mà chịu!

Bình luận (0)
NO
Xem chi tiết
DM
27 tháng 3 2020 lúc 13:12

\(\frac{ab}{2}=8\cdot\frac{a}{b}\)nên\(\Leftrightarrow a\cdot\frac{b}{2}=8\cdot\frac{a}{b}\)

\(\Leftrightarrow\frac{\left(\frac{ab}{2}\right)}{\left(\frac{a}{b}\right)}=8\Leftrightarrow\frac{ab}{2}\cdot\frac{b}{a}=8\Leftrightarrow\frac{ab^2}{2a}=8\)

\(\Leftrightarrow\frac{b^2}{2}=8\Leftrightarrow b^2=8\cdot2=16\Leftrightarrow b=\sqrt{16}=4\)

\(a+\frac{b}{2}=\frac{ab}{2}\)(1)mà \(b=4\) nên thay b vào biểu thức (1)được:

\(a+\frac{4}{2}=\frac{a4}{2}\Leftrightarrow a+2=a\cdot2\)

\(\Leftrightarrow2=a\)

Vậy \(a=2;b=4\)để thỏa mãn \(a+\frac{b}{2}=\frac{ab}{2}=8\cdot\frac{a}{b}\)

Bình luận (0)
 Khách vãng lai đã xóa
H24
Xem chi tiết
NM
Xem chi tiết
PD
Xem chi tiết
QT
Xem chi tiết
H24
11 tháng 9 2019 lúc 12:05

1a

\(A=\frac{3}{2ab}+\frac{1}{2ab}+\frac{1}{a^2+b^2}+\frac{a^4+b^4}{2}\ge\frac{6}{\left(a+b\right)^2}+\frac{4}{\left(a+b\right)^2}+\frac{\frac{\left(a^2+b^2\right)^2}{2}}{2}\)

\(\ge10+\frac{\left[\frac{\left(a+b\right)^2}{2}\right]^2}{4}=10+\frac{1}{16}=\frac{161}{16}\)

Dau '=' xay ra khi \(a=b=\frac{1}{2}\)

Vay \(A_{min}=\frac{161}{16}\)

Bình luận (0)
H24
11 tháng 9 2019 lúc 12:15

1b.\(B=\frac{1}{2ab}+\frac{1}{2ab}+\frac{1}{a^2+b^2}+\frac{a^8+b^8}{4}\ge\frac{2}{\left(a+b\right)^2}+\frac{4}{\left(a+b\right)^2}+\frac{\frac{\left(a^4+b^4\right)^2}{2}}{4}\)

\(\ge6+\frac{\left[\frac{\left(a^2+b^2\right)^2}{2}\right]^2}{8}\ge6+\frac{\left[\frac{\left(a+b\right)^2}{2}\right]^2}{32}=6+\frac{1}{128}=\frac{769}{128}\)

Dau '=' xay ra khi \(a=b=\frac{1}{2}\)

Vay \(B_{min}=\frac{769}{128}\)khi \(a=b=\frac{1}{2}\)

Bình luận (0)
H24
11 tháng 9 2019 lúc 18:20

Bài 2 Dùng Cauchy-Schwarz dạng Engel là ra:D

Bài 3:Đừng vội dùng Cauchy-Schwarz dạng Engel ngay kẻo bị phức tạp:v Thay vào đó hãy khai triển nó ra:

\(A=x^2+y^2+2\left(\frac{x}{y}+\frac{y}{x}\right)+\frac{1}{x^2}+\frac{1}{y^2}\)

\(\ge4+2.2+\frac{4}{x^2+y^2}=4+4+1=9\)

Đẳng thức xảy ra khi \(x=y=\sqrt{2}\)

Bài 4: Dùng Cauchy or Bunhiacopxki là ok!

Bình luận (0)
NT
Xem chi tiết
AM
Xem chi tiết
NH
22 tháng 3 2016 lúc 8:25

B=1^8trên1^2

Bình luận (0)
NG
22 tháng 3 2016 lúc 8:26

\(\frac{1}{12}\)

Bình luận (0)
AM
22 tháng 3 2016 lúc 8:29

có thể giải chi tiết ko

Bình luận (0)