2/3+2/15+2/35+2/63+2/99+2/143+2/195
x-2/15-2/35-2/63-2/99-2/143-2/195=7/15
BẰNG 11/15 NHA BẠN
tính bằng cách nhanh nhất
2/15 + 2/35 + 2/63 + 2/99 + 32/143 + 2/195
2/15 + 2/35 + 2/63 + 2/99 + 2/143 + 2/195
\(=2\times\left(\dfrac{1}{3.5}+\dfrac{1}{5.7}+\dfrac{1}{7.9}+\dfrac{1}{9.11}+\dfrac{1}{11.13}+\dfrac{1}{13.15}\right)\)
= \(2\times\left(\dfrac{1}{3}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{7}+\dfrac{1}{7}-\dfrac{1}{9}+\dfrac{1}{9}-\dfrac{1}{11}+\dfrac{1}{11}-\dfrac{1}{13}+\dfrac{1}{13}-\dfrac{1}{15}\right)\)
\(=2\times\left(\dfrac{1}{3}-\dfrac{1}{15}\right)\)
\(=2\times\dfrac{4}{15}\)
\(=\dfrac{8}{15}\)
a) A = 1/15+1/35+1/63+1/99+1/143+1/195
a) M= 1+3+3^2+3^3+...+3^25 và N = 3^26 : 2 Tính N-M
a)\(A=\frac{1}{15}+\frac{1}{35}+...+\frac{1}{195}=\frac{1}{3.5}+\frac{1}{5.7}+...+\frac{1}{13.15}=\frac{1}{2}\left(\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{13}-\frac{1}{15}\right)=\frac{1}{2}\left(\frac{1}{3}-\frac{1}{15}\right)=\frac{2}{15}\)
b)\(M=1+3+3^2+...+3^{25}=\frac{3^{26}-1}{3-1}=\frac{3^{26}-1}{2}
A=\(\dfrac{2}{3}\)+\(\dfrac{14}{15}\)+\(\dfrac{34}{35}\)+\(\dfrac{62}{63}\)+\(\dfrac{98}{99}\)+\(\dfrac{142}{143}\)+\(\dfrac{194}{195}\)
Và B=5+\(\dfrac{1}{2^2}\)+\(\dfrac{1}{3^3}\)+\(^{\dfrac{1}{4^4}}\)+\(\dfrac{1}{5^5}\)+\(\dfrac{1}{6^6}\)+\(\dfrac{1}{7^7}\).So sánh A và B
Tính:
A = 2 - \(\frac{2^3}{35}-\frac{2^3}{63}-\frac{2^3}{99}-\frac{2^3}{143}-\frac{2^3}{195}\)
2/15+2/35+2/63+2/99+2/143
=2/3.5 + 2/5.7 + 2/7.9 + 2/9.11 + 2/11.13
=1/3-1/5+1/5-1/7+1/7-1/9+1/9-1/11+1/11-1/13
= 1/3 - 1/13
= 13/39 -3/39
=10/39
\(\dfrac{2}{3.5}+\dfrac{2}{5.7}+\dfrac{2}{7.9}+\dfrac{2}{9.11}+\dfrac{2}{11.13}\\ =\dfrac{1}{3}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{7}+\dfrac{1}{7}-\dfrac{1}{9}+\dfrac{1}{9}-\dfrac{1}{11}+\dfrac{1}{11}-\dfrac{1}{13}\\ =\dfrac{1}{3}-\dfrac{1}{13}\\ =\dfrac{13}{39}-\dfrac{3}{39}\\ =\dfrac{10}{39}\)
NHỚ TÍNH ĐÚNG VỚI CHO COIN NHA
Tính nhanh:
\(\dfrac{2}{3}\) + \(\dfrac{2}{15}\) + \(\dfrac{2}{35}\) + \(\dfrac{2}{63}\) + \(\dfrac{2}{99}\) + \(\dfrac{2}{143}\) .
Giải:
\(\dfrac{2}{3}+\dfrac{2}{15}+\dfrac{2}{35}+\dfrac{2}{63}+\dfrac{2}{99}+\dfrac{2}{143}\)
\(=\dfrac{2}{1.3}+\dfrac{2}{3.5}+\dfrac{2}{5.7}+\dfrac{2}{7.9}+\dfrac{2}{9.11}+\dfrac{2}{11.13}\)
\(=\dfrac{1}{1}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{7}+\dfrac{1}{7}-\dfrac{1}{9}+\dfrac{1}{9}-\dfrac{1}{11}+\dfrac{1}{11}-\dfrac{1}{13}\)
\(=\dfrac{1}{1}-\dfrac{1}{13}\)
\(=\dfrac{12}{13}\)
Chúc em học tốt!
2/3+2/15+2/35+2/63+2/99+2/143
=2(1/1x3+1/3x5+1/5x7+1/7x9+1/9x11+1/11x13)
=2(1-1/3+1/3-1/5+1/5-....+1/13)
=2(1-1/13)
=2.12/13=24/13
S=2/15+2/35+2/63+2/99+2/143
$\frac{2}{15}+\frac{2}{35}+\frac{2}{63}+\frac{2}{99}+\frac{2}{143}=\frac{2}{3.5}+\frac{2}{5.7}+$\frac{2}{7.9}+\frac{2}{9.11}+\frac{2}{11.13}$
=$\frac{1}{3}-\frac{1}{5}+.....+\frac{1}{11}-\frac{1}{13}$
=$\frac{1}{3}-\frac{1}{13}=\frac{10}{39}$
Vậy....
\(S=\dfrac{2}{15}+\dfrac{2}{35}+\dfrac{2}{63}+\dfrac{2}{99}+\dfrac{2}{143}\)
\(S=\dfrac{2}{3.5}+\dfrac{2}{5.7}+\dfrac{2}{7.9}+\dfrac{2}{9.11}+\dfrac{2}{11.13}\)
\(S=\dfrac{1}{3}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{7}+\dfrac{1}{7}-\dfrac{1}{9}+\dfrac{1}{9}-\dfrac{1}{11}+\dfrac{1}{11}-\dfrac{1}{13}\)
\(S=\dfrac{1}{3}-\dfrac{1}{13}\)
\(S=\dfrac{13}{39}-\dfrac{3}{39}\)
\(S=\dfrac{10}{39}\)
Vậy \(S=\dfrac{10}{39}\)
Thực hiện phép tính:
a/ 2/3+2/15+2/63+2/99+2/143+2/195
b/ 1/4+1/8+1/77+1/130+1/208
a) Đề thiếu nhé. sửa đề:
\(\frac{2}{3}+\frac{2}{15}+\frac{2}{35}+...+\frac{2}{195}\)
\(=\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+...+\frac{2}{13.15}\)
\(=1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{13}-\frac{1}{15}\)
\(=1-\frac{1}{15}\)
\(=\frac{14}{15}\)