Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6


Những câu hỏi liên quan
HD
Xem chi tiết
HD
Xem chi tiết
TD
Xem chi tiết
KS
20 tháng 3 2017 lúc 21:32

S  = 17 . [ \(1+17+17^2\)] + \(17^3\left[1+17+17^2\right]\)+.......+\(^{17^5\left[1+17+17^3\right]}\)

S = 17 . 307 + 17^3 . 307 +....+ 17^5 .307

S= 307[ 17+17^3 +...+17^5] => S chia hết cho 307 

Bình luận (0)
H24
20 tháng 3 2017 lúc 21:33

Có tất cả số hạng ở biểu thức S là:

(18-1):1+1=18(số)

Vì 18 chia hết cho 3 nên ta chia biểu thức S làm 6 nhóm mỗi nhóm có 3 số hạng

S=17+17^2+17^3+.......+17^18

S=(17+17^2+17^3)+.......+(17^16+17^17+17^18)

S=17.(1+17+17^2)+........+17^16.(1+17+17^2)

S=17.307+.............+17^16.307

S=307.(17+........+17^16) chia hết cho 307

Vậy S chia hết cho 307

~shizadon~

Bình luận (0)
ML
20 tháng 3 2017 lúc 21:35

\(S=17+17^2+17^3+...+17^{18}\)

\(S=\left(17+17^2+17^3\right)+...+\left(17^{16}+17^{17}+17^{18}\right)\)

\(S=71\left(1+17+17^2\right)+...+17^{17}\left(1+17+17^2\right)\)

\(S=17.307+...+17^{17}307\)

\(S=307\left(17+...+17^{17}\right)\)

\(\Rightarrow S⋮307\)

Bình luận (0)
TP
Xem chi tiết
HY
Xem chi tiết
DD
Xem chi tiết
ND
Xem chi tiết
NQ
14 tháng 2 2021 lúc 21:25

S=(15+152+153)+...+ (1516+1517+1518)

S=(15+152+153)+...+1515.(15+152+153)

S=(15+152+153).(1+..+1515)

S=3615.(1+..+1515)

mà 3615 chia hết cho 241

=> S chia hết cho 241

Bình luận (0)
 Khách vãng lai đã xóa
VH
Xem chi tiết
H24
13 tháng 7 2016 lúc 20:15

câu thứ 2

 a - 5b chia hết cho 17 thì 10a-50b chia hết cho 17 
10a-50b=10a+b-51b 
51b chia hết cho 17 nên 10a+b chia hết cho 17

Bình luận (0)
SB
13 tháng 7 2016 lúc 20:15

51a : 17

=> 51a - a + 5b : 17

=> 50a + 5b : 17

=> 5 ( 10a + b ) : 17

=> 10a + b : 17

Bình luận (0)
OP
13 tháng 7 2016 lúc 20:17

Ta có : tích của 2 và 3 thì chia hết cho 17 

=> 10a = 2 x 5  x a + b chia hết cho 17

Những câu dưới bạn tự làm nha

Bình luận (0)
H24
Xem chi tiết
an
5 tháng 1 2016 lúc 15:51

51a:17

=> 51a-a+5b:17

=> 50a+5b:17

=> 5(10a+b):17

=> 10a+b:17

Bình luận (0)
H24
6 tháng 11 2017 lúc 6:21

Câu trả lời hay nhất:  + ta chứng minh a,b,c có ít nhất một số chia hết cho 3 
giả sử cả 3 số trên đều không chia hết cho 3 
=> a^2 = 1 (mod3) và b^2 = 1 (mod3) (bình phương 1 số chia hết cho 3 hoạc chia 3 dư 1) 
=> a^2 + b^2 = 2 (mod3) nhưng c^2 = 1 (mod3) => mâu thuẫn 
Vậy có ít nhất 1 số chia hết cho 3 
+ tương tự,có ít nhất 1 số chia hết cho 4,vì giả sử cả 3 số a,b,c đều không chia hết cho 4 
=> a^2 = 1 (mod4) và b^2 = 1 (mod4) => a^2 + b^2 = 2 (mod 4) nhưng c^2 = 1 (mod 4) => mâu thuẫn 
vậy có ít nhất 1 số cgia hết cho 4 
+ tương tự a^2 = 1 (mod 5) hoạc a^2 = -1 (mod 5) hoạc a^2 = 4 (mod 5) 
và -1 + 1 = 0,1 + 4 = 5,-1 + 4 = 3 
=> phải có ít nhất 1 số chia hết cho 5 
Vậy abc chia hết cho BCNN(3,4,5) = 60 hay abc chia hết 60

Bình luận (0)
DH
21 tháng 11 2021 lúc 21:22

a )  Cho 3a + 2b chia hết cho 17 ( a,b thuộc N ) . Chứng minh rằng : 10a + b chia hết cho 17

b )  Cho a - 5b chia hết cho 17 ( a,b thuộc N ) . chứng minh rằng : 10a + b chia hết cho 17

Bình luận (0)
NL
Xem chi tiết