Những câu hỏi liên quan
NM
Xem chi tiết
KN
7 tháng 4 2018 lúc 21:59

Xét vì P>5 nên P thuộc dạng 5k+1 ; 5k+2 ; 5k+3 ;5k+4

nếu P=5k+1 =>2P+1=2(5k+1)+1=10k+3

                     =>4P+1=4(5k+1)+1=20k+5(TM)

nếu P=5k+2=>2P+1=2(5k+2)+1=10k+5(KTM với đề bài)

nếu P=5k+3 =>2P+1=2(5k+3)+1=10k+7

                    =>4P+1=4(5k+3)+1=20k+13(KTM với đề bài)

nếu P=5k+4 =>2P+1=2(5k+4)+1=10k+9

                    =>4P+1=4(5k+4)+1=20k(KTM với đề bài)

Vậy với P=5k+1 thì 4P+1 là hợp số

Bình luận (0)
AH
Xem chi tiết
DG
14 tháng 7 2016 lúc 20:42

 p và 2p+1 nguyên tố
* nếu p = 3 thì p và 2p+1 đều nguyên tố, 4p+1 = 13 nguyên tố
* xét p # 3
=> 2p không chia hết cho 3, và 2p+1 là số nguyên tố > 3 nên không chia hết cho 3
=> 2p+2 chia hết cho 3 (do 3 số nguyên liên tiếp phải có 1 số chia hết cho 3)
=> 2(2p+2) = 4p+4 = 4p+1+3 chia hết cho 3 => 4p+1 chia hết cho 3

kết luận: 4p+1 nguyên tố nếu p = 3, và là hợp số nếu p nguyên tố # 3

Bình luận (0)
H24
17 tháng 10 2021 lúc 9:13

undefined

k cho mik nhé

Bình luận (0)
 Khách vãng lai đã xóa
TV
Xem chi tiết
RT
24 tháng 2 2016 lúc 17:27

vi p la so nguyen to nen p khong chia het cho 3 

=>p=2k+1 hoac 2k+2

- xet p=2k+1 thi 8p+1=8(2k+1)+1

                                =16k+8+1

                                = 16k+10

                                = 2(8k+5)

vi 2 chia het cho 2 nen 2(8k+8)  chia het cho 2

=>8p+1 la hop so.vo li

=>p khac 2k+1

- xet p=2k+2 thi 4p+1=4(2k+2)+1

                                = 8k+8+1

                                =8k+10

                                 =2(4k+5)

vi 2 chia het cho 2 nen 2(4k+5) chia het cho 2

=>4p+1 la hop so

vay 4p+1 la hop so

Bình luận (0)
TX
Xem chi tiết
PT
12 tháng 12 2015 lúc 18:26

Câu hỏi tương tự, tick nha Tran Thi Xuan

Bình luận (0)
HH
12 tháng 12 2015 lúc 18:28

vào câu hỏi tương tự đó bạn

Bình luận (0)
LT
Xem chi tiết
NA
Xem chi tiết
TV
9 tháng 1 2018 lúc 19:54

       Do p là số nguyên tố > 3 nên 4p không thể chia hết cho 3 được , mà 4p + 2 = 2.(2p +4 ) cũng không chia hết cho 3.

       Mà 4p , 4p + 1 , 4p + 2 là 3 số tự nhiên liên tiếp nên ít nhất phải có 1 số chia hết cho 3 . Vì 4p + 1 chia hết cho 3 hay 4p + 1 lớn hơn 13 do đó 4p + 1 là hợp số 

Bình luận (0)
NA
9 tháng 1 2018 lúc 19:56

Vì p nguyên tố \(>3\)\(\Rightarrow p=3k+1\)hoặc \(p=3k+2\)

Với \(p=3k+1\Rightarrow2p+1=2\left(3k+1\right)+1\)

           \(=6k+2+1=6k+3⋮3\)

\(\Rightarrow\) Là hợp số \(\Rightarrow\)Không thỏa mãn

\(\Rightarrow p=3k+2\Rightarrow4p+1=4\left(3k+2\right)+1\)

          \(=12k+8+1=12k+9⋮3\)

\(\Rightarrow\) \(4p+1\)là hợp số

Bình luận (0)
H24
Xem chi tiết
TM
Xem chi tiết
TT
25 tháng 2 2020 lúc 10:40

Do p là số nguyên tố mà p < 3

\(\Rightarrow p=2\) Khi đó : \(2p+1=5\) là số nguyên tố

Do đó   \(4p+1=4.2+1=9\) là hợp số.

Bình luận (0)
 Khách vãng lai đã xóa
NH
25 tháng 2 2020 lúc 10:47

Vì p là số nguyên tố lớn hơn 3 nên p sẽ có 2 dạng đó là : 3k + 1 và 3k + 2

Ta có 2 trường hợp :

* TH1 : p = 3k + 1 

\(\Rightarrow\)2p + 1 = 2 . ( 3k + 1 ) + 1 = 6k + 2 + 1 = 6k + 3 = 3 . ( 2k + 1 ) là hợp số 

\(\Rightarrow\)Trường hợp này bị loại vì theo đề bài 2p + 1 phải là nguyên tố .

* TH2 : p = 3k + 2

\(\Rightarrow\)2p + 1 = 2 . ( 3k + 2 ) + 1 = 6k + 4 + 5 = 6k + 5 là số nguyên tố .

\(\Rightarrow\)Trường hợp này được chọn vì đúng theo yêu cầu đề bài .

\(\Rightarrow\)4p + 1 = 4 . ( 3k + 2 ) + 1 = 12k + 8 + 1 = 12k + 9 = 3 . ( 4k + 3 ) là hợp số .

         Vậy 4p + 1 là hợp số ( đpcm )

Bình luận (0)
 Khách vãng lai đã xóa
NH
Xem chi tiết
VN
9 tháng 1 2016 lúc 21:37

bạn viết đề lại được không vậy ? chẳng hiểu gì cả ?

Bình luận (0)