Những câu hỏi liên quan
HN
Xem chi tiết
BB
Xem chi tiết
TT
10 tháng 12 2020 lúc 17:18

\(A=\left(a+b+c\right)\left(bc+ac+ab\right)-abc\)

\(=abc+b^2c+bc^2+a^2c+abc+ac^2+a^2b+ab^2+abc-abc\)

\(\left(b^2c+bc^2\right)+\left(a^2c+a^2b\right)+\left(ac^2+abc\right)+\left(ab^2+abc\right)\)

\(=bc\left(b+c\right)+a^2\left(b+c\right)+ac\left(c+b\right)+ab\left(b+c\right)\)

\(=\left(b+c\right)\left(bc+a^2+ac+ab\right)\)

\(=\left(b+c\right)\left[a\left(a+b\right)+c\left(a+b\right)\right]\)

\(=\left(a+b\right)\left(a+c\right)\left(b+c\right)\)

Bình luận (0)
H24
Xem chi tiết
NT
10 tháng 12 2015 lúc 7:27

bn tick cho mik trước đi mik giải chi tiết ra cho

Bình luận (0)
NH
10 tháng 12 2015 lúc 4:56

CHTT nha bạn ! 

Bình luận (0)
ND
Xem chi tiết
H24
31 tháng 7 2019 lúc 15:37

#)Giải :

a)\(ab\left(b-a\right)+bc\left(b-c\right)+ca\left(c-a\right)\)

\(=a\left(a-b\right)+b^2c-bc^2+ac^2-a^2c\)

\(=ab\left(a-b\right)-\left(a-b\right)\left(a+b\right)c+c^2\left(a-b\right)\)

\(=\left(ab-ac-bc+c^2\right)\left(a-b\right)\)

\(=\left(a-b\right)\left(b-c\right)\left(a-c\right)\)

b) \(a^2\left(b-c\right)-b^2\left(c-a\right)+c^2\left(a-b\right)\)

\(=a^2\left(b-c\right)-b^2\left[\left(b-c\right)+\left(a-b\right)\right]+c^2\left(a-b\right)\)

\(=a^2\left(b-c\right)-b^2\left(b-c\right)-b^2\left(a-b\right)+c^2\left(a-b\right)\)

\(=\left(a^2-b^2\right)\left(b-c\right)-\left(b^2-c^2\right)\left(a-b\right)\)

\(=\left(a-b\right)\left(a+b\right)\left(b-c\right)-\left(b-c\right)\left(b+c\right)\left(a-b\right)\)

\(=\left(a-b\right)\left(b-c\right)\left(a-c\right)\)

Bình luận (0)
QN
Xem chi tiết
NQ
12 tháng 7 2018 lúc 14:07

a b<a+b> <a-b> +  bc < b - c> < b + c >+ ca < c - a > < c + a>

a² b+ ab² + a² b - ab²  + b² c -bc²  +b² c + bc²  + c² a -ca²  + c² a +ca² 

<a² b +a² b> + < ab² - ab² > + < b²c + b² c > + <-bc² + bc² > + < c² a +c² a> + <-ca² + ca² >

2 a² b + 2 b² c +2 c² a

XONG NHA NGƯỜI ANH EM

Bình luận (0)
H24
Xem chi tiết
H24
24 tháng 10 2018 lúc 9:09

-(bc^2-ac^2-b^2c-a^2c+ab^2-a^2b)

Bình luận (0)
HS
24 tháng 10 2018 lúc 9:56

Ta có : \(A=ab(a-b)+bc(b-c)+ca(c-a)\)

\(\Rightarrow A=ab(a-b)-bc(c-b)+ac(c-a)\)

\(\Rightarrow A=ab(a-b)-bc[(c-a)+(a-b)]+ac(c-a)\)

\(\Rightarrow A=ab(a-b)-bc(a-b)-bc(c-a)+ac(c-a)\)

\(\Rightarrow A=(a-b)(ab-bc)+(c-a)(ac-bc)\)

\(\Rightarrow A=b(a-b)(a-c)-(a-c)c(a-b)\)

\(\Rightarrow A=(a-c)(a-b)(b-c)\)

Chúc học tốt trong kì thi tới :>

Bình luận (0)
NT
Xem chi tiết
NH
Xem chi tiết
PL
30 tháng 6 2019 lúc 12:31

\(ab\left(a-b\right)+bc\left(b-c\right)+ca\left(c-a\right)\)

\(=ab\left(a-b\right)+b^2c-bc^2+c^2a-ca^2\)

\(=ab\left(a-b\right)+\left(b^2c-ca^2\right)-\left(bc^2-c^2a\right)\)

\(=ab\left(a-b\right)-c\left(a^2-b^2\right)+c^2\left(a-b\right)\)

\(=ab\left(a-b\right)-c\left(a-b\right)\left(a+b\right)+c^2\left(a-b\right)\)

\(=\left(a-b\right)\left(ab-ca-cb+c^2\right)\)

\(=\left(a-b\right)\left[\left(ab-cb\right)-\left(ca-c^2\right)\right]\)

\(=\left(a-b\right)\left[b\left(a-c\right)-c\left(a-c\right)\right]\)

\(=\left(a-b\right)\left(b-c\right)\left(a-c\right)\)

Bình luận (0)
CD
Xem chi tiết
TA
10 tháng 7 2017 lúc 14:56

\(ab\left(a-b\right)+bc\left(b-c\right)+ca\left(c-a\right)=ab\left(a-b\right)+b^2c-bc^2+c^2a-ca^2\)

\(=ab\left(a-b\right)-\left(ca^2-b^2c\right)+\left(c^2a-bc^2\right)=ab\left(a-b\right)-c\left(a+b\right)\left(a-b\right)+c^2\left(a-b\right)\)

\(=\left(a-b\right)\left(ab-ca-cb+c^2\right)=\left(a-b\right)\left[\left(ab-ca\right)-\left(cb-c^2\right)\right]\)

\(=\left(a-b\right)\left[a\left(b-c\right)-c\left(b-c\right)\right]=\left(a-b\right)\left(b-c\right)\left(a-c\right)\)

Bình luận (0)