Phân tich da thuc thanh nhan tu
\(^{x^2-2xy+y^2-2x+2y}\)
\(x^3-49x\)
\(x^2-y^2+6x+9\)
\(x^2-6x+5\)
Phan tich cac da thuc thanh nhan tu:
x3- 2x2 - x + 2
x2 + 6x - y2 + 9
x^3-2x^2-x+2=x^2(x-2)-(x-2)=(x^2-1)(x-2)=(x-1)(x+1)(x-2)
a)(x3- x) - (2x2 - 2)
= x (x2 - 1) - 2 (x2 - 1)
= (x - 2) (x2-1)
a) \(x^3-2x^2-x+2=\left(x^3-x\right)+\left(-2x^2+2\right)\)
\(=x\left(x^2-1\right)-2\left(x^2-1\right)=\left(x-2\right)\left(x^2-1\right)=\left(x-2\right)\left(x+1\right)\left(x-1\right)\)
b) \(x^2+6x-y^2+9=\left(x^2+6x+9\right)-y^2\)
\(\left(x+3\right)^2-y^2=\left(x+3-y\right)\left(x+3+y\right)\)
(x^2+x)^2+3(x^2+x)+2
x^2+2xy+y^2+2x+2y-15
phan tich da thuc thanh nhan tu
phan tich da thuc thanh nhan tu
a) xy-y2+2x-2y
b) x2+2xy+y2-9
a, = (xy-y^2) + (2x-2y) = y(x-y) + 2.(x-y) = (x-y).(y+2)
b, = (x+y)^2 - 9 = (x+y-3).(x+y+3)
\(xy-y^2-2x-2y\)
=(xy-y).(2x-2y)
=y(x-y).2(x-y)
=(x-y).(y-2)
1 . Phan tich da thuc thanh nhan tu :
x^2 + 6x - 9 -y^2
2. Tim x :
x^2 -x - 12 = 0
Bài 1:
\(x^2-6x+9-y^2\)
\(=\left(x-3\right)^2-y^2\)
\(=\left(x-3+y\right)\left(x-3-y\right)\)
Bài 2:
\(x^2-x-12=0\)
\(\Leftrightarrow x^2-4x+3x-12=0\)
\(\Leftrightarrow x\left(x-4\right)+3\left(x-4\right)=0\)
\(\Leftrightarrow\left(x+3\right)\left(x-4\right)=0\)
\(\Leftrightarrow\left[\begin{array}{nghiempt}x+3=0\\x-4=0\end{array}\right.\)\(\Leftrightarrow\left[\begin{array}{nghiempt}x=-3\\x=4\end{array}\right.\)
1. x2+6x-9-y2
=-(x2-6x+y2)-32
=-(x-y)2-32
=(-x+y-3)(-x+y+3)
2. x2 - x - 12 = 0
=> x2 - 4x + 3x - 12 = 0
=> x( x - 4 ) + 3( x - 4 ) = 0
=> ( x + 3 )(x - 4 ) = 0
\(\Rightarrow\left[\begin{array}{nghiempt}x+3=0\\x-4=0 \end{array}\right.\) \(\Rightarrow\left[\begin{array}{nghiempt}x=-3\\x=4\end{array}\right.\)
Vậy x=-3; x=4
Phan tich da thuc thanh nhan tu
3x^2-11x+6
x^2-6x+5
x^4+x^2+1
x^4-4x^2+3
6x^2+7xy+2y^2
(*)\(3x^2-11x+6=3x^2-2x-9x+6=x\left(3x-2\right)-3\left(3x-2\right)=\left(x-3\right)\left(3x-2\right)\)
(*)\(x^2-6x+5=x^2-x-5x+5=x\left(x-1\right)-5\left(x-1\right)=\left(x-5\right)\left(x-1\right)\)
(*)\(x^4+x^2+1=x^4+2x^2+1-x^2=\left(x^2+1\right)^2-x^2=\left(x^2+1+x\right)\left(x^2+1-x\right)\)
(*)\(x^4-4x^2+3=x^4-x^2-3x^2+3=x^2\left(x^2-1\right)-3\left(x^2-1\right)=\left(x+1\right)\left(x-1\right)\left(x^2-3\right)\)
(*)\(6x^2+7xy+2y^2=6x^2+4xy+3xy+2y^2=2x\left(3x+2y\right)+y\left(3x+2y\right)=\left(2x+y\right)\left(3x+2y\right)\)
a, \(3x^2-11x+6=3x^2-2x-9x+6=x\left(3x-2\right)-3\left(3x-2\right)=\left(3x-2\right)\left(x-3\right)\)
b, \(x^2-6x+5=x^2-x-5x+5=x\left(x-1\right)-5\left(x-1\right)=\left(x-1\right)\left(x-5\right)\)
c, \(x^4+x^2+1=x^4+2x^2+1-x^2=\left(x^2+1\right)^2-x^2=\left(x^2+x+1\right)\left(x^2-x+1\right)\)
d, \(x^4-4x^2+3=x^4-4x^2+4-1=\left(x^2-2\right)^2-1=\left(x^2-1\right)\left(x^2-3\right)=\left(x+1\right)\left(x-1\right)\left(x^2-3\right)\)
e, \(6x^2+7xy+2y^2=6x^2+3xy+4xy+2y^2=3x\left(2x+y\right)+2y\left(2x+y\right)=\left(2x+y\right)\left(3x+2y\right)\)
Phan tich da thuc x^2 + y^3 + 2x^2 -2cy + 2y^2 thanh nhan tu
phan tich da thuc thanh nhan tu
x^2+6x+9
10x-25-x^2
8x^3-1/8
8x^3+12x^2+6xy^2+y^3
\(a,x^2+6x+9\)
\(=\left(x+3\right)^2\)
\(b,10x-25-x^2\)
\(=-\left(x^2-10x+25\right)\)
\(=-\left(x-5\right)^2\)
\(c,8x^3-\frac{1}{8}\)
\(=8x^3-\left(\frac{1}{2}\right)^3\)
\(=\left(8x-\frac{1}{2}\right)\left(64x^2+4x+\frac{1}{4}\right)\)
\(d,8x^3+12x^2+6xy^2+y^3\)
\(=2\left(4x^3+6x^2+3xy^2+\frac{1}{2}y^3\right)\)
hok tốt!
Điệp viên 007 sai c
c, \(8x^3-\frac{1}{8}=\left(2x\right)^3-\left(\frac{1}{2}\right)^3=\left(2x-\frac{1}{2}\right)\left(4x^2+x+\frac{1}{4}\right)\)
phan tich da thuc thanh nhan tu
A=x^6-2x^5-4x^4+6x^3+4x^2-2x-1
phan tich da thuc thanh nhan tu
a) 2a(x+y)+y+x
b) 2(x-y)^2-x+y
c) x^2-xy-3x+3y
d) ax^2+6x^2-6x-ax+a+b
2) phan tich da thuc thanh nhan ( nhieu phuong phap)
a) 5a^2+20a+20 c) 25-x^2+2xy-y^2
b) 5a^2-10ab+5b^2 d) m^2+2mn+n^2-p^2