Tìm a,b để x^3 + ax + b , chia x+1 dư 7, chia x-2 dư 4
Tìm a,b để x^3 + ax + b , chia x+1 dư 7, chia x-2 dư 4
Ta phân tích thành
\(x^3+ax+b=\left(x+1\right)\left(x^2-x+a+1\right)+b-a-1\)
Và \(x^3+ax+b=\left(x-2\right)\left(x^2+2x+a+4\right)+b+2a+8\)
Kết hợp với đề bài ta có hệ
\(\hept{\begin{cases}b-a-1=7\\b+2a+8=4\end{cases}\Leftrightarrow\hept{\begin{cases}a=-4\\b=4\end{cases}}}\)
1. a,Tìm a,b để x3+ax+b chia cho x+1 dư 7, cho x-3 dư -5
b, Tìm a,b để (x4+4) chia hết cho (x2+ax+b)
2. Xây dựng tổng quát về tìm dư khi chia đa thức A(x) cho nhị thức (x-a)
Áp dựng: tìm dư khi chia A(x)=x2018+x2017+x2016 cho x-1
2. Tìm n thuộc Z để
a, 2n^2 -n-7 chia hết cho n-2
b, 25n^2 - 97n +11 chia hết cho n-4
1.Tìm a,b biết x^3 + ax +b chia x+1 dư 7; chia cho x-3 dư -5
Câu 1.
Tìm a,b để \(x^3+ax+b\)chia \(x+1\)dư 7 và chia cho \(x-3\)dư -5.
Thương của phép chia đa thức bậc 3 \(x^3+ax+b\)cho \(x+1\)là 1 đa thức bậc 2 có hệ số bậc 2 bằng 1, tổng quát ở dạng: \(x^2+mx+n\).Số dư của phép chia này là 7 nên ta có:\(x^3+ax+b=\left(x+1\right)\left(x^2+mx+n\right)+7\mid\forall x\in R\)
\(\Leftrightarrow x^3+ax+b=x^3+\left(m+1\right)x^2+\left(m+n\right)x+n+7\mid\forall x\in R\)
Để 2 đa thức này bằng nhau với mọi x thuộc R thì hệ số các bậc phải bằng nhau. Đồng nhất chúng ta có:
\(\hept{\begin{cases}m+1=0\\m+n=a\\n+7=b\end{cases}\Rightarrow\hept{\begin{cases}m=-1\\n=a+1\\b=a+1+7\end{cases}\Rightarrow}b=a+8\mid\left(1\right)}\)
Tương tự với phép chia \(x^3+ax+b\)cho \(x-3\)dư -5.\(x^3+ax+b=\left(x-3\right)\left(x^2+px+q\right)-5\mid\forall x\in R\)
\(\Leftrightarrow x^3+ax+b=x^3+\left(p-3\right)x^2+\left(q-3p\right)x-\left(3q+5\right)\mid\forall x\in R\)
\(\Rightarrow\hept{\begin{cases}p-3=0\\q-3p=a\\-\left(3q+5\right)=b\end{cases}\Rightarrow\hept{\begin{cases}p=3\\q=a+9\\b=-\left(3\left(a+9\right)+5\right)\end{cases}\Rightarrow}b=-3a-32\mid\left(2\right)}\)
Từ (1) và (2) ta có:\(\hept{\begin{cases}b=a+8\\b=-3a-32\end{cases}\Rightarrow a+8=-3a-32\Rightarrow\hept{\begin{cases}a=-10\\b=-2\end{cases}}}\)
Vậy với \(a=-10;b=-2\)thì đa thức đã cho trở thành \(x^3-10x-2\)chia cho \(x+1\)dư 7 và chia cho \(x-3\)dư -5.Viết kết quả các phép chia này ta được:\(\hept{\begin{cases}x^3-10x-2=\left(x+1\right)\left(x^2-x-9\right)+7\\x^3-10x-2=\left(x-3\right)\left(x^2+3x-1\right)-5\end{cases}\mid\forall x\in R}\)
Tìm a,b để:
X3 + aX2 - 4 chia hết X2 + 4X + 4
X3 + aX + b chia hết X2 - 2 + 2X
2X2 + aX + 1 chia X - 3 dư 4
X3 + aX + b chia X + 1 dư 7; chia X - 3 dư -5
a,Tìm a,b để x3+ax+b chia cho x+1 dư 7, cho x-3 dư -5
b, Tìm a,b để (x4+4) chia hết cho (x2+ax+b)
tìm a và b để đa thức x^3+ax+b chia cho x²+x+2 dư 2 còn chia cho x+1 dư -4
1. tìm các hằng số a và b sao cho x^3 + ax + b chia hết cho x+1 thì dư 7 chia cho x-3 dư -5.
2. tìm các hằng số a,b,c sao cho ax^3 + bx^2 + c chia cho x+ 2 , chia cho x^2 - 1 thì dư x+5
Tìm a,b
a) x^4 -x^3 + ax +b chia cho x^2-x-2 dư 2x-3
b) 2x^3 +ax +b chia cho x+1 dư -6 chia cho x-2 dư 21
a) x^4 - x^3 + ax + b chia cho x^2 -x - 2 dư 2x - 3
=> x^4 - x^3 + ax + b = ( x^2 - x - 2 ) q(x) + 2x - 3
=> x^4 - x^3 + ax + b = ( x + 1 )(x- 2 ) q(x) + 2x - 3
Thay x = 2 ta có :
2^4 - 2^3 + 2a + b = 0 + 2.2 - 3
16 - 8 + 2a + b = 1
8 + 2a + b = 1
2a + b = -7 => b = -7 - 2a
Thay x = -1 ta có :
(-1)^4 - (-1)^3 + (-1).a + b = 0 + 2(-1) - 3
1 + 1 - a + b = -2 - 3
2 - a + b = -5
-a + b = - 7
Thay b = -7 - 2 a ta có :
-a + -7 - 2a = -7
-3a - 7 = -7
-a = 0
a = 0
b = - 7 -2a = -7 - 0 = -7
Vậy a = 0 ; b = -7
a, 27x^2+a chia hết cho (3x+2)
b, x^4+ax^2+1 chia hết cho x^2 +2x+1
c, 3x^2+ax+27 chia cho x+5 có số dư bằng 2
Bài 2: Tìm a, b sao cho:
a, x^4+ax^2+b chia hết cho x^2+x+1
b, ax^3+bx-24 chia hết cho (x-1)(x+3)
c, x^4-x^3-3x^2+ax+b chia cho x^2-x-2 dư 2x-3
d, 2x^3+ax+b chia cho x+1 dư -6, chia cho x-2 dư 21.
Bài 1:
a) (27x^2+a) : (3x+2) được thương là 9x - 6, dư là a + 12.
Để 27x^2+a chia hết cho (3x+2) thì số dư a+12 =0 suy ra a = -12.
b, a=-2
c,a=-20
Bài2.Xác định a và b sao cho
a)x^4+ax^2+1 chia hết cho x^2+x+1
b)ax^3+bx-24 chia hết cho (x+1)(x+3)
c)x^4-x^3-3x^2+ax+b chia cho x^2-x-2 dư 2x-3
d)2x^3+ax+b chia cho x+1 dư -6, x-2 dư 21
Giải
a) Đặt thương của phép chia x^4+ax^2+1 cho x^2+x+1 là (mx^2 + nx + p) (do số bị chia bậc 4, số chia bậc 2 nên thương bậc 2)
<=> x^4 + ax^2 + 1 = (x^2+ x+ 1)(mx^2 + nx + p)
<=> x^4 + ax^2 + 1 = mx^4 + nx^3 + px^2 + mx^3 + nx^2 + px + mx^2 + nx + p (nhân vào thôi)
<=> x^4 + ax^2 + 1 = mx^4 + x^3(m + n) + x^2(p + n) + x(p + n) + p
Đồng nhất hệ số, ta có:
m = 1
m + n = 0 (vì )x^4+ax^2+1 không có hạng tử mũ 3 => hê số bậc 3 = 0)
n + p = a
n + p =0
p = 1
=>n = -1 và n + p = -1 + 1 = 0 = a
Vậy a = 0 thì x^4 + ax^2 + 1 chia hết cho x^2 + 2x + 1
Mấy cái kia làm tương tự, có dư thì bạn + thêm vào, vd câu d:
Đặt 2x^3+ax+b = (x + 1)(mx^2 + nx + p) - 6 = (x - 2)(ex^2 + fx + g) + 21
b) f(x)=ax^3+bx-24; để f(x) chia hết cho (x+1)(x+3) thì f(-1)=0 và f(-3)=0
f(-1)=0 --> -a-b-24=0 (*); f(-3)=0 ---> -27a -3b-24 =0 (**)
giải hệ (*), (**) trên ta được a= 2; b=-26
c) f(x) =x^4-x^3-3x^2+ax+b
x^2-x-2 = (x+1)(x-2). Gọi g(x) là thương của f(x) với (x+1)(x-2). Khi đó:
f(x) =(x+1)(x-2).g(x) +2x-3
f(-1) =0+2.(-1)-3 =-5; f(2) =0+2.2-3 =1
Mặt khác f(-1)= 1+1-3-a+b =-1-a+b và f(2)=2^4-2^3-3.2^2+2a+b = -4+2a+b
Giải hệ: -1-a+b=-5 và -4+2a+b =1 ta được a= 3; b= -1
d) f(x) =2x^3+ax+b chia cho x+1 dư -6, x-2 dư 21. vậy f(-1)=-6 và f(2) =21
f(-1) = -6 ---> -2-a+b =-6 (*)
f(2)=21 ---> 2.2^3+2a+b =21 ---> 16+2a+b=21 (**)
Giải hệ (*); (**) trên ta được a=3; b=-1