Những câu hỏi liên quan
H24
Xem chi tiết
H24
27 tháng 11 2016 lúc 9:31

-2,5<=x<=3/2

Bình luận (0)
LL
Xem chi tiết
GD

\(A=0,6+\left|\dfrac{1}{2}-x\right|\\ Vì:\left|\dfrac{1}{2}-x\right|\ge\forall0x\in R\\ Nên:A=0,6+\left|\dfrac{1}{2}-x\right|\ge0,6\forall x\in R\\ Vậy:min_A=0,6\Leftrightarrow\left(\dfrac{1}{2}-x\right)=0\Leftrightarrow x=\dfrac{1}{2}\)

Bình luận (0)
GD

\(B=\dfrac{2}{3}-\left|2x+\dfrac{2}{3}\right|\\ Vì:\left|2x+\dfrac{2}{3}\right|\ge0\forall x\in R\\ Nên:B=\dfrac{2}{3}-\left|2x+\dfrac{2}{3}\right|\le\dfrac{2}{3}\forall x\in R\\ Vậy:max_B=\dfrac{2}{3}\Leftrightarrow\left|2x+\dfrac{2}{3}\right|=0\Leftrightarrow x=-\dfrac{1}{3}\)

Bình luận (0)
HM
Xem chi tiết
DL
Xem chi tiết
PD
Xem chi tiết
NH
Xem chi tiết
TP
3 tháng 9 2018 lúc 14:33

a) Ta có : | 1/2 - x | >= 0 với mọi x

=> 0,6 + | 1/2 - x | >= 0,6 với mọi x

Dấu " = " xảy ra <=> 1/2 - x = 0 => x = 1/2

Vậy,_

b) Ta có : | 2y + 2/3 | >= với mọi x

=> 2/3 - | 2y + 2/3 | < 2/3 với mọi x

Dấu " = " xảy ra <=> 2y + 2/3 = 0 => y = -1/3

Vậy,_

Bình luận (0)
NN
3 tháng 9 2018 lúc 14:41

a,  Do \(|\frac{1}{2}-x|\)\(\ge\)\(0\)với mọi x \(\Rightarrow\)\(A\ge0,6\)

Dấu bằng xảy ra \(\Leftrightarrow\) \(|\frac{1}{2}-x|=0\Leftrightarrow\frac{1}{2}-x=0\Leftrightarrow x=\frac{1}{2}\)

Vậy GTNN \(A=0,6\Leftrightarrow x=\frac{1}{2}\)

b, Do \(|2y+\frac{2}{3}|\ge0\)với mọi y \(\Rightarrow\) \(B\le\frac{2}{3}\)

Dấu bằng xảy ra \(\Leftrightarrow\)\(|2y+\frac{2}{3}|=0\Leftrightarrow2y+\frac{2}{3}=0\Leftrightarrow2y=\frac{-2}{3}\Leftrightarrow y=\frac{-1}{3}\)

Vậy GTLN \(B=\frac{2}{3}\)\(\Leftrightarrow y=\frac{-1}{3}\)

Bình luận (0)
H24
Xem chi tiết
PQ
26 tháng 5 2018 lúc 12:04

\(a)\) Ta có : 

\(\left|\frac{1}{2}-x\right|\ge0\) ( với mọi x ) 

\(\Rightarrow\)\(A=0,6+\left|\frac{1}{2}-x\right|\ge0,6\)

Dấu "=" xảy ra \(\Leftrightarrow\)\(\frac{1}{2}-x=0\)

\(\Leftrightarrow\)\(x=\frac{1}{2}\)

Vậy GTNN của \(A\) là \(0,6\) khi \(x=\frac{1}{2}\)

Chúc bạn học tốt ~ 

Bình luận (0)
PQ
26 tháng 5 2018 lúc 12:09

\(b)\) Ta có : 

\(\left|2x+\frac{2}{3}\right|\ge0\) ( với mọi x ) 

\(\Rightarrow\)\(-\left|2x+\frac{2}{3}\right|\le0\) ( với mọi x ) 

\(\Rightarrow\)\(B=\frac{2}{3}-\left|2x+\frac{2}{3}\right|\le\frac{2}{3}\) ( cộng hai vế cho \(\frac{2}{3}\) ) 

Dấu "=" xảy ra \(\Leftrightarrow\)\(2x+\frac{2}{3}=0\)

\(\Leftrightarrow\)\(2x=\frac{-2}{3}\)

\(\Leftrightarrow\)\(x=\frac{-2}{3}:2\)

\(\Leftrightarrow\)\(x=\frac{-2}{3}.\frac{1}{2}\)

\(\Leftrightarrow\)\(x=\frac{-1}{3}\)

Vậy GTLN của \(B\) là \(\frac{2}{3}\) khi \(x=\frac{-1}{3}\)

Chúc bạn học tốt ~ 

Bình luận (0)
LL
Xem chi tiết
HG
14 tháng 9 2015 lúc 21:49

Vì |1/2 - x| > 0

=> 0,6 + |1/2 - x| > 0,6

=> A > 0,6

Dấu "=" xảy ra

<=> 1/2 - x = 0

<=> x = 1/2

KL: Amin = 0,6 <=> x = 1/2

Vì |2x + 2/3| > 0

=> 2/3 - |2x + 2/3| < 2/3

=> B < 2/3

Dấu "=" xảy ra

<=> 2x + 2/3 = 0

<=> 2x = -2/3

<=> x = -1/3

KL: Bmax = 2/3 <=> x = -1/3

Bình luận (0)
HK
Xem chi tiết
NH
8 tháng 4 2023 lúc 18:52

A = \(\dfrac{2x-1}{x+2}\) 

a, A là phân số ⇔ \(x\) + 2  # 0  ⇒ \(x\) # -2

b, Để A là một số nguyên thì 2\(x-1\) ⋮ \(x\) + 2 

                                          ⇒ 2\(x\) + 4 - 5 ⋮ \(x\) + 2

                                         ⇒ 2(\(x\) + 2) - 5 ⋮ \(x\) + 2

                                         ⇒ 5 ⋮ \(x\) + 2

                            ⇒ \(x\) + 2 \(\in\) { -5; -1; 1; 5}

                            ⇒  \(x\)   \(\in\) { -7; -3; -1; 3}

c, A = \(\dfrac{2x-1}{x+2}\) 

  A = 2 - \(\dfrac{5}{x+2}\)

Với \(x\) \(\in\) Z và \(x\) < -3 ta có

                     \(x\) + 2 < - 3 + 2 = -1

              ⇒  \(\dfrac{5}{x+2}\) > \(\dfrac{5}{-1}\)  = -5  ⇒ - \(\dfrac{5}{x+2}\)<  5

              ⇒ 2 - \(\dfrac{5}{x+2}\) < 2 + 5 = 7 ⇒ A < 7 (1)

Với \(x\)  > -3;  \(x\) # - 2; \(x\in\)  Z ⇒ \(x\) ≥ -1 ⇒ \(x\) + 2 ≥ -1 + 2 = 1

            \(\dfrac{5}{x+2}\) > 0  ⇒  - \(\dfrac{5}{x+2}\)  < 0 ⇒ 2 - \(\dfrac{5}{x+2}\) < 2 (2)

Với \(x=-3\) ⇒ A = 2 - \(\dfrac{5}{-3+2}\) = 7 (3)

Kết hợp (1); (2) và(3)  ta có A(max) = 7 ⇔ \(x\) = -3

 

                     

             

                                   

     

 

            

Bình luận (0)