Những câu hỏi liên quan
DA
Xem chi tiết
H24
Xem chi tiết
VO
Xem chi tiết
RM
Xem chi tiết
KT
19 tháng 8 2018 lúc 23:25

Tam giác ACD vuông tại C có góc CAD = góc ABC = 60 độ   (cùng phụ với CAB)

=>  AC = 2AD

Áp dụng Pytago ta có:

AC2 = AD2 + DC2

<=>  4AD2 = AD2 + 900

<=>  AD2 = 300

<=> \(AD=10\sqrt{3}\)

Kẻ CH vuông với AB

AHCD là hình chữ nhật  (có góc A=D=H = 900)

=>  AH = CD = 30;   CH = AD = \(10\sqrt{3}\)

Tgiac ACB vuông tại C, ta có:

CH2 =HA.HB

=>  \(HB=\frac{CH^2}{HA}=10\)

=>   AB = AH + HB = 40

\(S_{ABCD}=\frac{1}{2}CH.\left(AB+CD\right)=350\sqrt{3}\)

Bình luận (0)
H24
Xem chi tiết
KT
19 tháng 8 2018 lúc 23:24

Tam giác ACD vuông tại C có góc CAD = góc ABC = 60 độ   (cùng phụ với CAB)

=>  AC = 2AD

Áp dụng Pytago ta có:

AC2 = AD2 + DC2

<=>  4AD2 = AD2 + 900

<=>  AD2 = 300

<=> \(AD=10\sqrt{3}\)

Kẻ CH vuông với AB

AHCD là hình chữ nhật  (có góc A=D=H = 900)

=>  AH = CD = 30;   CH = AD = \(10\sqrt{3}\)

Tgiac ACB vuông tại C, ta có:

CH2 =HA.HB

=>  \(HB=\frac{CH^2}{HA}=10\)

=>   AB = AH + HB = 40

\(S_{ABCD}=\frac{1}{2}CH.\left(AB+CD\right)=350\sqrt{3}\)

Bình luận (0)
H24
Xem chi tiết
KT
19 tháng 8 2018 lúc 23:25

Tam giác ACD vuông tại C có góc CAD = góc ABC = 60 độ   (cùng phụ với CAB)

=>  AC = 2AD

Áp dụng Pytago ta có:

AC2 = AD2 + DC2

<=>  4AD2 = AD2 + 900

<=>  AD2 = 300

<=> \(AD=10\sqrt{3}\)

Kẻ CH vuông với AB

AHCD là hình chữ nhật  (có góc A=D=H = 900)

=>  AH = CD = 30;   CH = AD = \(10\sqrt{3}\)

Tgiac ACB vuông tại C, ta có:

CH2 =HA.HB

=>  \(HB=\frac{CH^2}{HA}=10\)

=>   AB = AH + HB = 40

\(S_{ABCD}=\frac{1}{2}CH.\left(AB+CD\right)=350\sqrt{3}\)

Bình luận (0)
CN
Xem chi tiết
PH
31 tháng 7 2018 lúc 14:20

a, Bạn chứng minh được \(\Delta ABD\infty\Delta BDC\left(g.g\right)\)

\(\Rightarrow\frac{AB}{BD}=\frac{BD}{DC}\Rightarrow AB.DC=BD^2\Rightarrow2.8=BD^2\Rightarrow BD^2=16\Rightarrow BD=4\left(cm\right)\)(vì AB = 2cm , CD = 8 cm)

Ta có: \(\frac{BD}{CD}=\frac{4}{8}=\frac{1}{2}\)

Xét tam giác BDC vuông tại B có: BD = 1/2 CD nên \(\widehat{C}=30^0\)

ABCD là hình thang vuông(gt) \(\Rightarrow AB//CD\)

 \(\Rightarrow\widehat{ABC}+\widehat{C}=180^0\) ( 2 góc trong cùng phía)

\(\Rightarrow\widehat{ABC}+30^0=180^0\) (do góc C = 30 độ)

\(\Rightarrow\widehat{ABC}=150^0\)

b, Áp dụng định lí Pitago vào tam giác ABD vuông tại A, tính được: \(AD=\sqrt{12}\left(cm\right)\)

Diện tích hình thang ABCD là: 

                         \(\frac{\left(2+8\right).\sqrt{12}}{2}=5\sqrt{12}\left(cm^2\right)\) 

Chúc bạn học tốt.

Bình luận (0)
BN
1 tháng 5 2020 lúc 8:17

thang cho dung hoi nua

Bình luận (0)
 Khách vãng lai đã xóa
NT
Xem chi tiết
ND
Xem chi tiết
TC
25 tháng 7 2021 lúc 16:16

undefined

Bình luận (0)
QE
Xem chi tiết