Những câu hỏi liên quan
NN
Xem chi tiết
LN
21 tháng 11 2016 lúc 22:59

e chịu thui

Bình luận (0)
AN
21 tháng 11 2016 lúc 23:35

\(B=\frac{5}{1.2.3}+\frac{5}{2.3.4}+...+\frac{5}{n.\left(n+1\right)\left(n+2\right)}\)

\(\Leftrightarrow\frac{2B}{5}=\frac{2}{1.2.3}+\frac{2}{2.3.4}+...+\frac{2}{n\left(n+1\right)\left(n+2\right)}\)

\(=\frac{1}{1.2}-\frac{1}{2.3}+\frac{1}{2.3}-\frac{1}{3.4}+...+\frac{1}{n\left(n+1\right)}-\frac{1}{\left(n+1\right)\left(n+2\right)}\)

\(=\frac{1}{2}-\frac{1}{\left(n+1\right)\left(n+2\right)}\)

\(\Rightarrow B=\frac{5}{4}-\frac{5}{2\left(n+1\right)\left(n+2\right)}\)

Bình luận (0)
HD
Xem chi tiết
T1
Xem chi tiết
BT
18 tháng 11 2019 lúc 20:18

Ta có

\(\frac{1}{n\left(n+1\right)}=\frac{1}{n}-\frac{1}{n+1}\)   và \(\frac{1}{n\left(n+1\right)\left(n+2\right)}=\frac{1}{n}-\frac{1}{n+1}-\frac{1}{n+2}\)  nên

\(A=\frac{1}{1\cdot2}+\frac{1}{2\cdot3}+...+\frac{1}{n\left(n+1\right)}+...+\frac{1}{2008\cdot2009}=1-\frac{1}{2009}=\frac{2008}{2009}\)

\(2B=\frac{2}{1\cdot2\cdot3}+\frac{2}{2\cdot3\cdot4}+...+\frac{2}{n\left(n+1\right)\left(n+2\right)}+...+\frac{2}{2008\cdot2009\cdot2010}\)

\(=\frac{1}{1\cdot2}-\frac{1}{2009\cdot2010}=\frac{201944}{2009\cdot2010}\)

\(\Rightarrow B=\frac{1}{2}\cdot\frac{201944}{2009\cdot2010}=\frac{1009522}{2009\cdot2010}\)

Do đó \(\frac{B}{A}=\frac{1009522}{2009\cdot2010}:\frac{2008}{2009}=\frac{1009522\cdot2009}{2008\cdot2009\cdot2010}=\frac{5047611}{2018040}\)

Bình luận (0)
 Khách vãng lai đã xóa
YA
Xem chi tiết
KK
Xem chi tiết
HQ
7 tháng 2 2017 lúc 17:43

\(A=\frac{5}{2.1}+\frac{4}{1.11}+\frac{3}{11.14}+\frac{1}{14.15}+\frac{13}{15.28}\)

\(\frac{A}{7}=\frac{5}{2.7}+\frac{4}{7.11}+\frac{3}{11.14}+\frac{1}{14.15}+\frac{13}{15.28}\)

\(\frac{A}{7}=\frac{7-2}{2.7}+\frac{11-7}{7.11}+\frac{14-11}{11.4}+\frac{15-14}{14.15}+\frac{28-15}{15.28}\)

\(\frac{A}{7}=\frac{1}{2}-\frac{1}{7}+\frac{1}{7}-\frac{1}{11}+\frac{1}{11}-\frac{1}{14}+\frac{1}{14}-\frac{1}{15}+\frac{1}{15}-\frac{1}{28}=\frac{1}{2}-\frac{1}{28}=\frac{13}{28}\)

\(A=7.\frac{13}{28}\)

\(A=\frac{13}{4}\)

Bình luận (0)
ND
Xem chi tiết
VD
Xem chi tiết
HD
Xem chi tiết
KS
Xem chi tiết
HM
24 tháng 3 2016 lúc 9:56

Sorry em mới học lớp 6

Bình luận (0)
PS
24 tháng 3 2016 lúc 10:00

A = \(\frac{3}{\left(1.2\right)^2}+\frac{5}{\left(2.3\right)^2}+\frac{7}{\left(3.4\right)^2}+........+\frac{2n+1}{\left[n\left(n+1\right)\right]^2}\)

A = \(\frac{3}{1^2.2^2}+\frac{5}{2^2.3^2}+\frac{7}{3^2.4^2}+............+\frac{2n+1}{2^2.\left(n+1\right)^2}\)

A = \(\frac{3}{1.4}+\frac{5}{4.9}+\frac{7}{9.16}+........\frac{2n+1}{n^2.\left(n+1\right)^2}\)

A = \(\frac{1}{1}-\frac{1}{4}+\frac{1}{4}-\frac{1}{9}+\frac{1}{9}-\frac{1}{16}+.........+\frac{2n+1}{n^2}-\frac{2n+1}{\left(n+1\right)2}\)

A = \(\frac{1}{1}-\frac{2n+1}{\left(n+1\right)^2}\)

A = \(1-\frac{2n+1}{\left(n+1\right)2}\)

nha bạn.

Bình luận (0)
H24
24 tháng 3 2016 lúc 10:08

A=\(\frac{\left(2+1\right)1}{1^2.2^2}+\frac{\left(3+2\right)1}{2^2.3^2}+...+\frac{\left[\left(n+1\right)+n\right]1}{n^2\left(n+1\right)^2}\)

A=\(\frac{\left(2+1\right)\left(2-1\right)}{1^2.2^2}+\frac{\left(3+2\right)\left(3-2\right)}{2^2.3^3}+...+\frac{\left[\left(n+1\right)+n\right]\left[\left(n+1\right)-n\right]}{n^2\left(n+1\right)^2}\)

A=\(\frac{2^2-1^2}{1^2.2^2}+\frac{3^2-2^2}{2^2.3^2}+...+\frac{\left(n+1\right)^2-n^2}{n^2.\left(n+1\right)^2}\)

A=\(\left(\frac{1}{1^2}-\frac{1}{2^2}\right)+\left(\frac{1}{2^2}-\frac{1}{3^2}\right)+...+\left(\frac{1}{n^2}-\frac{1}{\left(n+1\right)^2}\right)\)

A=1-\(\frac{1}{\left(n+1\right)^2}\)

Bình luận (0)