Những câu hỏi liên quan
NH
Xem chi tiết
LH
15 tháng 8 2016 lúc 16:49

Gọi tập các số nguyên tố đã biết là P={p1, p2, …., pn} 
Xét số A= p1*p2*….*pn + 1 
Dễ thấy: A không hề chia hết cho bất cứ số nguyên tố nào đã biết (tức thuộc P) (1). 
Nhưng A luôn có thể phân tích thành các thừa số nguyên tố => A chia hết cho 1 số nguyên tố p nào đó. 
Từ (1) suy ra p ko thuộc P. 
Vậy luôn tồn tại 1 số nguyên tố ngoài những số đã biết. Tức có vô số số nguyên tố 

Chú ý: Công thức của A không phải là công thức tạo 1 số nguyên tố. Vì: 

_Nếu p1, p2,…, pn khác 2thì p1, p2,… pn lẻ. 
Suy ra A = p1*p2*…*pn +1 chẵn. Mà số nguyên tố chẵn duy nhất là 2. A>2 suy ra A không phải là số nguyên tố. 

_Nếu p1, p2,…, pn có 1 số =2: 
Ví dụ: A = 2*7 +1 =15: không là số nguyên tố.

Bình luận (0)
CN
15 tháng 8 2016 lúc 16:56

Giả sử chỉ có hữu hạn số nguyên tố là p1 , p2 ....., pn trong đó pn là số lớn nhất trong các số nguyên tố.

Xét số A = p1p2 .... pn thì A chia cho mỗi số nguyên tố p1 ( 1 < i < n ) đều dư 1   ( 1 )

Mặt khác A là hợp số ( vì nó lớn hơn số nguyên tố lớn nhất là pn ) do đó A phải chia hết cho một số nguyên tố nào đó, tức là A chia hết cho một trong các số p1 ) 1 < i < n ) ( 2 ), mâu thuẫn với ( 1 ).

Vậy không thể có hữu hạn số nguyên tố ( đpcm )

Qua sự phân bố các nguyên tố, nhà toán học Pháp Bec - tơ - răng đưa ra dư đoán : Nếu n > 1 thì giữa n và 2n có ít nhất một số nguyên tố. Năm 1852, nhà toán học Nga Trê - bư - sếp đã chứng minh được mệnh đề này. Ông còn chứng minh được :

Nếu n > 3 thì giữa n và 2n - 2 có ít nhất một số nguyên tố. Ta cũng có mệnh đề sau : Nếu n > 5 thì giữa n và 2n có ít nhất hai số nguyên tố.

Bình luận (0)
NH
15 tháng 8 2016 lúc 16:58

Cảm ơn 2 bạn nhiều nhé ! haha

Bình luận (0)
LT
Xem chi tiết
DN
11 tháng 4 2015 lúc 16:16

Giả sử chỉ có hữu hạn số nguyên tố là p1, p2, ..., pn trong đó pn là số lớn nhất trong các số nguyên tố.

Xét số A = p1p2 ... pn +1 thì A chia cho mỗi số nguyên tố pk (1=<k=<n) đều dư 1 (1).

Mặt khác A là hợp số ( vì nó lớn hơn số nguyên tố lớn nhất là pn) do đó A phải chia hết cho một số nguyên tố nào đó, tức là A chia hết cho một trong các số pk, mâu thuẫn với (1).

Vậy không có hữu hạn số nguyên tố.

Bình luận (0)
NP
Xem chi tiết
DN
12 tháng 4 2015 lúc 16:23

Giả sử chỉ có hữu hạn số nguyên tố là p1, p2, ..., pn trong đó pn là số lớn nhất trong các số nguyên tố.

Xét số A = p1p2 ... pn +1 thì A chia cho mỗi số nguyên tố pk (1=<k=<n) đều dư 1 (1).

Mặt khác A là hợp số ( vì nó lớn hơn số nguyên tố lớn nhất là pn) do đó A phải chia hết cho một số nguyên tố nào đó, tức là A chia hết cho một trong các số pk, mâu thuẫn với (1).

Vậy không có hữu hạn số nguyên tố.

Bình luận (0)
KT
Xem chi tiết
KN
3 tháng 7 2016 lúc 20:42

Giả sử số số nguyên tố là hữu hạn thì ta xét số A bằng tích của tất cả các số nguyên tố đó cộng 1. Rõ ràng A nằm ngoài tập hợp các số nguyên tố (vì lớn hơn tất cả các số nguyên tố) nên nó không phải là số nguyên tố. Gọi B là ước số nhỏ nhất của A. Đến lượt B cũng không phải là số nguyên tố vì ta có thể thấy A không chia hết cho số nguyên tố nào (trong tập hợp hữu hạn các số nguyên tố, như đã giả thiết). Vậy B phải chia hết cho một số C. Số C này, dĩ nhiên là ước số của A, và nhỏ hơn B, mâu thuẫn. Tóm lại số số nguyên tố phải là vô hạn.

Bấm mình nha bạn....

Bình luận (0)
FZ
Xem chi tiết
NS
14 tháng 7 2015 lúc 9:51

c1:Giả sử số số nguyên tố là hữu hạn thì ta xét số A bằng tích của tất cả các số nguyên tố đó cộng 1. Rõ ràng A nằm ngoài tập hợp các số nguyên tố (vì lớn hơn tất cả các số nguyên tố) nên nó không phải là số nguyên tố. Gọi B là ước số nhỏ nhất của A. Đến lượt B cũng không phải là số nguyên tố vì ta có thể thấy A không chia hết cho số nguyên tố nào (trong tập hợp hữu hạn các số nguyên tố, như đã giả thiết). Vậy B phải chia hết cho một số C. Số C này, dĩ nhiên là ước số của A, và nhỏ hơn B, mâu thuẫn. Tóm lại số số nguyên tố phải là vô hạn.
c2:đầu tiên chứng minh định lý sau:
-ước số tụ nhiên nhỏ nhất khác 1 của một số tự nhiên lớn hơn 1 là một số nguyên tố
giả sử a là một số tự nhiên lớn hơn 1.Gọi p là ước số tự nhiên khác 1 của a, nếu a không là số nguyên tố thì vì p>1 nên nó phải là hợp số nghĩa là nó phải có một ước số p1, sao cho 1<p1<p.Nhưng khi đó p1 cũng là một ước số của a điều này mâu thuẫn với giả thiết rằng p là ước số tự nhiên nhỏ nhất khác 1 của a.Vậy p phải là số nguyên tố
- bây giờ là phần chứng minh định lý có vô số số nguyên tố:
- giả sử tập hợp số nguyên tố T là hữu hạn và gồm các phần tử: p1,p2,p3,p4............pm ta lập tích của chúng và cộng 1 để được
- n=(p1.p2.p3.p4.........pm)+1
theo định lý trên(ước số tự nhiên nhỏ nhất khác 1 của n là một số nguyên tố p). p không thể là một trong các số p1,p2,p3,p4..........pm được vì n không chia hết cho các số đó.Vậy p phải nằm ngoài tập hợp T ,trái với giả thiết T gồm tất cả các số nguyên tố . vậy T không thể hữu hạn do đó nó vô hạn

Bình luận (0)
TQ
25 tháng 12 2015 lúc 21:20

Nếu giải thích như Đinh Tuấn Việt thì ai chả giải thích được.

Bình luận (0)
DV
Xem chi tiết
DV
2 tháng 6 2015 lúc 10:35

Lê Chí Cường copy ở Wki chứ gì ! Bảo giải thích theo cách lớp 6 cơ mà !

Bình luận (0)
KT
2 tháng 6 2015 lúc 10:38

pn đọc cái định nghĩa này rồi dựa vào mà lm đi nhé 

ĐN: Số nguyên tố là các số tự nhiên lớn hơn 1 chỉ có 2 ước số là 1 và chính nó.

Bình luận (0)
DN
17 tháng 11 2017 lúc 13:05

Giải : Giả sử chỉ có hữu hạn số nguyên tố là p1 , p2 , ... , pn trong đó pn là số lớn nhất trong các số nguyên tố .

Xét số A = p1p2 ... pn + 1 thì A chia cho mỗi số nguyên tố pi ( 1 \(\le\)i \(\le\)n ) đều dư 1 (1).

Mặt khác A là hợp số ( vì nó lớn hơn số nguyên tố lớn nhất là pn ) do đó A phải chia hết cho một số nguyên tố nào đó , tức là A chia hết cho một trong các số pi ( 1 \(\le\)i \(\le\)n ) , mâu thuẫn với (1).

Vậy không thể có hữu hạn số nguyên tố

=> ( đpcm ).

Bình luận (0)
IM
Xem chi tiết
IM
28 tháng 4 2016 lúc 14:32

Gs có hữu hạn số nguyên tố

Chững minh điều hỉa sử đó là sai

Kết luận:k có hữu hạn số nguyên tố

Bình luận (0)
NL
28 tháng 4 2016 lúc 14:43

Hữu hạn là gì vậy các bạn

Bình luận (0)
NT
28 tháng 4 2016 lúc 15:16

CHO MK HỎI "HỬU HẠNG" LÀ GÌ ZẬY????

Bình luận (0)
CB
Xem chi tiết
VD
Xem chi tiết
VS
12 tháng 7 2018 lúc 21:41

Bn tìm trên google có nha mik xem zồi

Bình luận (0)
VS
12 tháng 7 2018 lúc 21:43

Ta có:Δ=b2−4acΔ=b2−4ac
Xét Δ≥0Δ≥0

giả sử pt đó có nghiệm hữu tỉ nên Δ=x2Δ=x2
Suy ra (b+x)(b−x)=4ac(b+x)(b−x)=4ac
Vì b,x cùng tính chẵn lẽ nên b+x chẵn;b-x chẵn
Ta xét các TH sau:
{b+x=ab−x=4c{b+x=ab−x=4c
mà b+x≥b−x⇒a≥4cb+x≥b−x⇒a≥4c nên c=1 (vì c lẻ )
Thay c=1 vào ta đc: {b=a2+2x=a2−2{b=a2+2x=a2−2
Thế vào ta tìm đc a=0(vô lý)
Xét {b+x=2acb−x=2{b+x=2acb−x=2
tương tự ta cũng có: 2ac≥2⇒ac≥1⇒a=1;c=12ac≥2⇒ac≥1⇒a=1;c=1
tính đc b=2 khi đ󠯯¯¯¯¯¯¯abc=121=112abc¯=121=112 ko phải là số nguyên tố
Xét {b+x=2ab−x=2c{b+x=2ab−x=2c
Ta chứng minh đc a>c
Suy ra b=a+c
khi đ󠯯¯¯¯¯¯¯abc=110a+11c⋮11abc¯=110a+11c⋮11 ko phải là số nguyên tố.
Vậy điều giả sử sai nên ta có đpcm 

Bình luận (0)