Những câu hỏi liên quan
LH
Xem chi tiết
LH
Xem chi tiết
H24
Xem chi tiết
H24
Xem chi tiết
HN
22 tháng 5 2016 lúc 20:26

Thêm điều kiện : x,y,z khác 0 và x+y+z khác 0

\(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=\frac{1}{x+y+z}\)\(\Rightarrow\) \(\left(\frac{1}{x}+\frac{1}{y}\right)+\left(\frac{1}{z}-\frac{1}{x+y+z}\right)=0\)\(\Leftrightarrow\frac{x+y}{xy}+\frac{x+y}{z\left(x+y+z\right)}=0\)\(\Leftrightarrow\left(x+y\right)\left(\frac{xz+xy+yz+z^2}{xyz\left(x+y+z\right)}\right)=0\)\(\Leftrightarrow\frac{\left(x+y\right)\left(x+z\right)\left(z+y\right)}{xyz\left(x+y+z\right)}=0\)

Do đó : x + y = 0 hoặc x + z = 0 hoặc y + z = 0

Từ đó thay x,y,z vào từng trường hợp rồi suy ra đpcm

Bình luận (0)
H24
22 tháng 5 2016 lúc 20:30

1/x+1/y+1/z=1/xyz

1/x+1/y=1/xyz-1/z

(x+y)(xy+yz+z^2)=0

(x+y)(x+z)(y+z)=0

x+y=0 suy ra x=-y

x+z=o suy ra z=x

z+y=0 suy ra y=-z

voi x=-y suy ra 1/x^2016+1/y^2016+1/z^2016=1/-y^2016+1/y^2016+1/z^2016=1/z^2016 (1)

1/x^2016+y^2016+z^2016=1/-y^2016+y^2016+z^2016 =1/z^2016 (2)

tu 1 va 2 suy ra dpcm

tinh gum minh cai chc chan bai nay dung

Bình luận (0)
VK
31 tháng 1 2019 lúc 21:06

Có cách nào dễ hiểu hơn ko

Bình luận (0)
H24
Xem chi tiết
HT
Xem chi tiết
HT
Xem chi tiết
HD
Xem chi tiết
HD
6 tháng 11 2016 lúc 22:41

\(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=\frac{1}{x+y+z}\)

\(\Rightarrow\frac{1}{x}+\frac{1}{y}+\frac{1}{z}-\frac{1}{x+y+z}=0\)

\(\Leftrightarrow\frac{yz\left(x+y+z\right)+xz\left(x+y+z\right)+xy\left(x+y+z\right)-xyz}{xyz\left(x+y+z\right)}=0\)

\(\Leftrightarrow\)\(xyz+y^2z+yz^2+x^2z+xyz+xz^2+x^2y+xy^2+xyz-xyz=0\)

\(\Leftrightarrow\)\(\left(xyz+y^2z\right)+\left(xyz+x^2z\right)+\left(xz^2+yz^2\right)+\left(xy^2+x^2y\right)=0\)

\(\Leftrightarrow yz\left(x+y\right)+xz\left(x+y\right)+z^2\left(x+y\right)+xy\left(x+y\right)=0\)

\(\Leftrightarrow\left(x+y\right)\left(yz+xz+xy+z^2\right)=0\)

\(\Leftrightarrow\left(x+y\right)\left(x+z\right)\left(y+z\right)=0\)

\(\Rightarrow\orbr{\begin{cases}x+y\\x+z=0\end{cases}}=0\)  hoặc y+z=0

Do đó ta có B=0

Bình luận (0)
NH
Xem chi tiết
TT
6 tháng 3 2020 lúc 21:23

Ta có : \(x^2+y^2\ge2xy\)

\(\Leftrightarrow2\left(x^2+y^2\right)\ge\left(x+y\right)^2\)

\(\Leftrightarrow x^2+y^2\ge\frac{\left(x+y\right)^2}{2}\)

Áp dụng vào bài toán có :

\(P\le\frac{x+y}{\frac{\left(x+y\right)^2}{2}}+\frac{y+z}{\frac{\left(y+z\right)^2}{2}}+\frac{z+x}{\frac{\left(z+x\right)^2}{2}}\) \(=\frac{2}{x+y}+\frac{2}{y+z}+\frac{2}{z+x}=\frac{1}{2}\left(\frac{4}{x+y}+\frac{4}{y+z}+\frac{4}{z+x}\right)\)

Áp dụng BĐT Svacxo ta có :

\(\frac{4}{x+y}\le\frac{1}{x}+\frac{1}{y}\)\(\frac{4}{y+z}\le\frac{1}{y}+\frac{1}{z}\)\(\frac{4}{z+x}\le\frac{1}{z}+\frac{1}{x}\)

Do đó : \(P\le\frac{1}{2}\left[2.\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)\right]=2016\)

Dấu "=" xảy ra \(\Leftrightarrow x=y=z=\frac{1}{672}\)

P/s : Dấu "=" không chắc lắm :))

Bình luận (0)
 Khách vãng lai đã xóa
NH
7 tháng 3 2020 lúc 9:42

thanks bạn mình hiểu sương sương rồi:))

Bình luận (0)
 Khách vãng lai đã xóa