Những câu hỏi liên quan
KN
Xem chi tiết
H24
Xem chi tiết
H24
29 tháng 5 2023 lúc 23:04

a.

Giả sử trong hai số x,y có một số chẵn; vai trò x,y như nhau; không mất tính tổng quát giả sử x chẵn ta có \(\left(xy\right)⋮2\)

Mà \(\left(x^2+y^2+10\right)⋮xy\)  nên \(\left(x^2+y^2+10\right)⋮2\Rightarrow y^2⋮2\Rightarrow y⋮2\)

Ta có \(xy⋮4\)

Do đó \(\left(x^2+y^2+10\right)⋮4\).

Mà \(x^2⋮4,y^2⋮4\)  nên \(10⋮4\)  (Điều này vô lý)

=> Giả sử trên là sai. Vậy x,y là hai số lẻ.

Đặt \(d=ƯCLN\left(x,y\right)\)

Ta có: \(x=da,b=db\) với a, b, d \(\in N\)* và \(ƯCLN\left(a,b\right)=1\)

Có: \(\left(d^2a^2+d^2b^2+10\right)⋮\left(d^2ab\right)\Rightarrow\left(d^2a^2+d^2b^2+10\right)⋮d^2\Rightarrow10⋮d^2\Rightarrow d=1\)

Vậy \(ƯCLN\left(x,y\right)=1\)

b. Theo đề suy ra \(kxy=x^2+y^2+10\)

Vì x,y là số lẻ nên \(\left(x+1\right)\left(x-1\right)⋮4;\left(y+1\right)\left(y-1\right)⋮4\)

\(\Rightarrow\left\{{}\begin{matrix}\left(x^2-1\right)⋮4\\\left(y^2-1\right)⋮4\end{matrix}\right.\)

Có: \(x^2+y^2+10=x^2-1+y^2-1+12\) chia hết cho 4 nên \(kxy⋮4\)

Mà ƯCLN \(\left(xy,4\right)=1\Rightarrow k⋮4\)

Giả sử trong 2 số x,y có một số chia hết cho 3; vai trò của x, y là như nhau, không mất tính tổng quát giả sử \(x⋮3\) . Ta có \(\left(xy\right)⋮3\)

Mà \(\left(x^2+y^2+10\right)⋮\left(xy\right)\)

Nên \(\left(x^2+y^2+10\right)⋮3\)  \(\Rightarrow\left(y^2+10\right)⋮3\Rightarrow\left(y^2+1\right)⋮3\Rightarrow\) \(y^2\) chia cho 3 dư 2 (Điều này vô lý)

=> Giả sử trên là sai. Vậy x,y là hai số không chia hết cho 3.

\(\RightarrowƯCLN\left(xy,3\right)=1\)\(x^2\) và \(y^2\) chia cho 3 dư 1.

Do đó \(\left(x^2+y^2+10\right)⋮3\)  nên \(kxy⋮3\)  mà \(ƯCLN\left(xy,3\right)=1\Rightarrow k⋮3,k⋮4\)

\(ƯCLN\left(3,4\right)=1.3.4=12\Rightarrow k⋮12\)

Mà \(k\in N\)* nên \(k\ge12\)

Bình luận (0)
BT
Xem chi tiết
TT
Xem chi tiết
TG
Xem chi tiết
LT
Xem chi tiết
LP
Xem chi tiết
NH
2 tháng 3 2022 lúc 20:47

guyrt8yfjgdfjvxkfjghdgfkg123456781548656

Bình luận (0)
 Khách vãng lai đã xóa
NP
Xem chi tiết
H24
Xem chi tiết