A = 1.2+2.3+3.4+.........................+1999.2000
1.2+2.3+3.4+4.5+.......+1999.2000
ban chi can nhan tat co cac do hang voi3 xong sau do ban tinh
ban chi can nhan cac so hang voi 3 la duoc
1.2+2.3+3.4+4.5+.........+1999.2000 TÍNH
ta có :
tính nhanh;1.2+2.3+3.4+...+1999.2000
Đặt A = 1.2 + 2.3 + 3.4 + ..... + 1999.2000
=> 3A = 1.2.3 + 2.3.3 + 3.4.3 + ..... + 1999.2000.3
=> 3A = 1.2.3 + 2.3.( 4 - 1 ) + 3.4.( 5 - 2 ) + ...... + 1999.2000.( 2001 - 1998 )
=> 3A = 1.2.3 + 2.3.4 - 1.2.3 + 3.4.5 - 2.3.4 + ..... + 1999.2000.2001 - 1998.1999.2000
=> 3A = 1999.2000.2001
=> A = \(\frac{1999.2000.2001}{3}\)
ket qua A = \(\frac{1999.2000.2001}{3}\) ban nha
1/1.2+1/2.3+1/3.4+...+1/1999.2000
\(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{1999.2000}\)
\(=\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...-\frac{1}{1999}+\frac{1}{1999}-\frac{1}{2000}\)
\(=\frac{1}{1}-\left(-\frac{1}{2}+\frac{1}{2}\right)+\left(-\frac{1}{3}+\frac{1}{3}\right)+...+\left(-\frac{1}{1999}+\frac{1}{1999}\right)-\frac{1}{2000}\)
\(=\frac{1}{1}+0+0+...+0-\frac{1}{2000}\)
\(=\frac{1}{1}-\frac{1}{2000}\)
\(=\frac{2000}{2000}-\frac{1}{2000}\)
\(=\frac{1999}{2000}\)
1/1.2 + 1/2.3 + 1/3.4+.....+1/1999.2000 = ?
1/1.2 + 1/2.3 + 1/3.4 + ... + 1/1999.2000
= 1 -1/2+1/2-1/3+1/3-1/4+....+1/1999-1/2000
= 1- 1/2000
= 1999/2000
1.2+2.3+3.4+.....+1999.2000
Cảm ơn nhiều
giải:
đặt A=1.2+2.3+3.4+....+1999.2000
=>3A=1.2.3+2.3.3+3.4.3+...+1999.2000.3
=>3A=1.2.3+2.3.(4-1)+3.4.(5-2)+.....+1999.2000(2001-1998)
=>3A=1.2.3+2.3.4-1.2.3+3.4.5-2.3.4+....+1999.2000.2001-1998.1999.2000
=>3A=1999.2000.2001
=>A=\(\dfrac{1999.2000.2001}{3}\)
A=1.2+2.3+3.4+.....+1999.2000
Mai mình phải nộp bài rồi giúp mình cái
1.2 = 1/3. 1.2.3 - 0.1.2
2.3 = 1/3. 2.3.4 - 1.2.3
................................
1999.2000 = 1/3. 1999.2000.2001 - 1998.1999.2000 = 3998000
Quậy A = 3998000
Hãy k đúng cho mik nha!!!!!!!!!!
1.2+2.3+3.4+.........+1999.2000
=>3A=1.2.3+2.3.3+3.4.3+....+1999.2000.3
=>3A=1.2.3+2.3.(4-1)+3.4.(5-2)+.....+1999.2000.(2001-1998)
=>3A=1.2.3+2.3.4-1.2.3+3.4.5-2.3.4+....+1999.2000.2001-1998.1999.2000
=>3A=1999.2000.2001
=>A=7999998000:3
=>A=2666666000
Chứng tỏ rằng: 1/1.2+1/2.3+1/3.4+...+1/1999.2000<1
A=1.2+2.3+3.4+4.5+...1999.2000
B=1.1+2.2+3.3+4.4+....1999.1999
C=1.2.3+2.3.4+3.4.5+....+48.49.50